Design of High-Temperature Superconducting Dual-Band Filter With Multiple Transmission Zeros

2019 ◽  
Vol 29 (6) ◽  
pp. 1-12 ◽  
Author(s):  
Liguo Zhou ◽  
Hui Li ◽  
Zhihe Long ◽  
Shuangshuang Cao ◽  
Mingyan Jiang ◽  
...  
Frequenz ◽  
2016 ◽  
Vol 70 (9-10) ◽  
Author(s):  
Chuanming Zhu ◽  
Jin Xu ◽  
Wei Kang ◽  
Zhenxin Hu ◽  
Wen Wu

AbstractIn this paper, a miniaturized dual-band bandpass filter (DB-BPF) using embedded dual-mode resonator (DMR) with controllable bandwidths is proposed. Two passbands are generated by two sets of resonators operating at two different frequencies. One set of resonators is utilized not only as the resonant elements that yield the lower passband, but also as the feeding structures with source-load coupling to excite the other to produce the upper passband. Sufficient degrees of freedom are achieved to control the center frequencies and bandwidths of two passbands. Moreover, multiple transmission zeros (TZs) are created to improve the passband selectivity of the filter. The design of the filter has been demonstrated by the measurement. The filter features not only miniaturized circuit sizes, low insertion loss, independently controllable central frequencies, but also controllable bandwidths and TZs.


2019 ◽  
Vol 18 (4) ◽  
pp. 596-600 ◽  
Author(s):  
Jianping Zhu ◽  
Zhongyin Hao ◽  
Cheng Wang ◽  
Zhengyong Yu ◽  
Cheng Huang ◽  
...  

2019 ◽  
Vol 11 (9) ◽  
pp. 894-898
Author(s):  
Q. F. Geng ◽  
H. J. Guo ◽  
Y. Y. Zhu ◽  
W. Huang ◽  
S. S. Deng ◽  
...  

AbstractIn this paper, a novel single-cavity triangular substrate-integrated waveguide (TSIW) dual-band filter loading a complementary triangular split ring resonator (CTSRR) is proposed, which has three transmission zeros (TZs) in the stopband in total. The dual-band response is achieved by the CTSRR and the degenerate modes of the TSIW cavity. In order to control the TZs, we propose two adjustment techniques, shift feeding technique and adding via perturbation. In addition, the CTSRR etched on the surface can produce a new TZ in the upper first-passband. Finally, a dual-band filter with three TZs is simulated, fabricated, and measured. There is a good agreement between the simulated results and measured ones.


2017 ◽  
Vol 7 (4) ◽  
pp. 1786-1790
Author(s):  
M. Abdul-Niby ◽  
M. Farhat ◽  
M. Nahas ◽  
Μ. Μ. Alomari

This paper presents a planar tri-band bandpass filter with high out-of-band rejection over a wide band. The filter is based on two pairs of λ/4 resonators embedded inside an open loop ring resonator without any size increase, where each pair of resonators are electromagnetically coupled to each other and the feedlines. This results in the excitations of passbands, where the first passband is generated by the open loop resonators. The second and the third passbands are excited by λ/4 resonators. The proposed technique provides sufficient degrees of freedom to control the center frequency and bandwidth of the three passbands independently. In addition, the six transmission zeros created around the passbands results in a tri-band filter with high selectivity, sharp 3 dB cut-off frequency, high isolation, low passband insertion-loss and high out-of-band harmonic rejection across an ultra-broadband frequency range up to 17 GHz. The proposed technique has the ability to switch from triple to dual band by removing one pair of the inner resonators. Design methodology and simulation results of the filter are provided.


2018 ◽  
Vol 27 (07) ◽  
pp. 1850100 ◽  
Author(s):  
Amit Bage ◽  
Sushrut Das

This paper presents a planar insert-loaded compact, dual-pole, dual-band, waveguide bandpass filter with adjustable multiple transmission zeros. Two identical inserts are placed on the transverse plane of a standard WR-90 waveguide at 8.41[Formula: see text]mm distance to achieve the filter characteristics. The insert consists of a stub-loaded C-shaped resonator and two asymmetric slot resonators. Two stub-loaded C-shaped resonators have been used to achieve dual-pole, dual-band response whereas the asymmetric slot pairs have been used to introduce transmission zeros. The structure allows independent control of the center frequencies of the passbands and transmission zeros, which is useful to control the rejection level of out-of-band signals without disturbing the center frequency. Measured result shows a dual-pole, dual-band, bandpass response with center frequencies at 8.81[Formula: see text]GHz and 10.9[Formula: see text]GHz, the respective 3[Formula: see text]dB bandwidths of 0.276[Formula: see text]GHz and 0.398[Formula: see text]GHz and transmission zeros at 8.02, 8.5, 9.46, 10.13, 11.53 and 12 GHz.


Sign in / Sign up

Export Citation Format

Share Document