degenerate modes
Recently Published Documents


TOTAL DOCUMENTS

123
(FIVE YEARS 16)

H-INDEX

20
(FIVE YEARS 2)

Electronics ◽  
2021 ◽  
Vol 10 (18) ◽  
pp. 2273
Author(s):  
Neetu Sehrawat ◽  
Binod Kanaujia ◽  
Anshul Agarwal ◽  
Gaurav Varshney

The perturbation approach is presented here for the first time for the analysis of an inhomogeneous circularly polarized rectangular dielectric resonator (DR) antenna (DRA). The inhomogeneous permittivity is created by perturbing a rectangle-shaped region of different material inside the rectangular dielectric resonator antenna (RDRA). The orthogonal degenerate modes with a phase difference of 90°, TE111x and TE111y, are excited simultaneously for achieving circular polarization. A simple expression for the calculation of the resonant frequency and optimal axial ratio point for a circularly polarized (CP) inhomogeneous RDRA is presented here. Theoretical results obtained from the proposed theory are compared with theoretical, simulated, and experimental data available in the literature. The proposed analysis results show optimal axial ratio point calculations within a 1% range of the simulated and experimental data, which is better than the previous transverse transmission line reported method, having an error of approximately 4%. The advantages, accuracy, and simplicity of perturbation theory for DR are discussed in detail. The proposed theory can be easily extended for higher order modes and other shapes of material perturbation and anisotropic DRAs. The proposed technique will help in incorporation of the perturbation in the DR so that CP radiation can be obtained in an easy way.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Mario Zitelli ◽  
Fabio Mangini ◽  
Mario Ferraro ◽  
Oleg Sidelnikov ◽  
Stefan Wabnitz

AbstractIt has been recently demonstrated that multimode solitons are unstable objects which evolve, in the range of hundreds of nonlinearity lengths, into stable single-mode solitons carried by the fundamental mode. We show experimentally and by numerical simulations that femtosecond multimode solitons composed by non-degenerate modes have unique properties: when propagating in graded-index fibers, their pulsewidth and energy do not depend on the input pulsewidth, but only on input coupling conditions and linear dispersive properties of the fiber, hence on their wavelength. Because of these properties, spatiotemporal solitons composed by non-degenerate modes with pulsewidths longer than a few hundreds of femtoseconds cannot be generated in graded-index fibers.


Micromachines ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 880
Author(s):  
David Hoch ◽  
Kevin-Jeremy Haas ◽  
Leopold Moller ◽  
Timo Sommer ◽  
Pedro Soubelet ◽  
...  

Visualizing eigenmodes is crucial in understanding the behavior of state-of-the-art micromechanical devices. We demonstrate a method to optically map multiple modes of mechanical structures simultaneously. The fast and robust method, based on a modified phase-lock loop, is demonstrated on a silicon nitride membrane and shown to outperform three alternative approaches. Line traces and two-dimensional maps of different modes are acquired. The high quality data enables us to determine the weights of individual contributions in superpositions of degenerate modes.


Frequenz ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Sheng Zhang ◽  
Chao Ji ◽  
Meng-Han Tong ◽  
Zhen-Jiang Xie ◽  
Cong Xu

Abstract A compact dual-band balanced bandpass filter with high frequency selectivity and adjustable passband based on the perturbed circular substrate integrated waveguide cavity is firstly proposed in this paper. Two pairs of metallic vias are located at 45°direction of cavities to separate a pair of degenerate modes (TM110 modes) to achieve the differential-mode (DM) dual-band response. Moreover, the perturbation vias can also be used to control the center frequency of the second DM passband while the first one still stays unaffected. The introduction of source-load coupling makes the filter exhibit excellent selectivity. And four controllable transmission zeros appear near two DM passbands. Finally, good common-mode suppression has been got owing to the proposed balanced structure. The measured results are in accordance with the simulated ones well.


Energies ◽  
2020 ◽  
Vol 13 (17) ◽  
pp. 4436 ◽  
Author(s):  
Peter Wouters ◽  
Armand van Deursen

Temperature variation from dynamic cable loading affects the propagation characteristics of transient signals. The distortion of modal signal components as a function of temperature in a three-phase medium-voltage cable is investigated. The temperature influence arises mainly through the complex insulation permittivity, which has a non-linear relationship with temperature. Near the maximum operating temperature of the cross-linked polyethylene insulation, the propagation velocity increases by 0.56% per degree centigrade but is an order of magnitude less sensitive at ambient temperature. The paper presents modeling results based on cable impedance and admittance matrices obtained from electromagnetic field simulation, taking into account the time-varying temperature distribution in the cable cross-section. The results are verified by applying Rayleigh–Schrödinger perturbation analysis. In the time domain, signal patterns shift when the modal propagation velocities change upon cable loading. Moreover, separation of degenerate modes is observed when the cable phase conductors carry an unbalanced current. The perspectives for exploiting the temperature dependency of signal propagation for pinpointing cable defects and for dynamic rating of underground power cables are discussed.


2020 ◽  
Vol 12 (5) ◽  
pp. 352-355
Author(s):  
Mohammad Sajjad Bayati ◽  
Tahsin Khorand

AbstractIn this paper, a novel directional filter (DF) is proposed and implemented using substrate integrated waveguide (SIW) technology which exhibits the advantages of compact size and simple structure. The proposed DF is realized by two half mode substrate integrated waveguides (HMSIWs) and two substrate integrated circular cavity (SICC) resonators operating in the TM110 degenerate modes in which an aperture is utilized to realize the coupling between HMSIWs and SICCs. Two slotlines with appropriate dimensions, etched on the top and bottom planes, are utilized in order to control coupling strength between two cascaded SICC resonators. The proposed two-circular cavity SIW DF at 12.3 GHz is designed and fabricated with a normal printed circuit board process. Measured and simulated results indicate that the DF has a 3.25% bandwidth, and the return loss as well as isolation are better than 10.5 and 15 dB, respectively.


Sign in / Sign up

Export Citation Format

Share Document