Estimation of the Optimal Maximum Beam Angle and Angular Increment for Normal and Shear Strain Estimation

2009 ◽  
Vol 56 (3) ◽  
pp. 760-769 ◽  
Author(s):  
Tomy Varghese ◽  
Min Rao
2007 ◽  
Vol 33 (1) ◽  
pp. 57-66 ◽  
Author(s):  
M. Rao ◽  
Q. Chen ◽  
H. Shi ◽  
T. Varghese ◽  
E.L. Madsen ◽  
...  

Author(s):  
Tim Idzenga ◽  
Hendrik H.G. Hansen ◽  
Johan M. Thijssen ◽  
Chris L. de Korte

Author(s):  
Tim Idzenga ◽  
Hendrik H. G. Hansen ◽  
Johan M. Thijssen ◽  
Chris L. de Korte

Ultrasonics ◽  
2000 ◽  
Vol 38 (1-8) ◽  
pp. 400-404 ◽  
Author(s):  
Elisa E. Konofagou ◽  
Tim Harrigan ◽  
Jonathan Ophir

Author(s):  
N. Qiu ◽  
J. E. Wittig

PtCo hard magnets have specialized applications owing to their relatively high coercivity combined with corrosion resistance and ductility. Increased intrinsic coercivity has been recently obtained by rapid solidification processing of PtCo alloys containing boron. After rapid solidification by double anvil splat quenching and subsequent annealing for 30 minutes at 650°C, an alloy with composition Pt42Co45B13 (at.%) exhibited intrinsic coercivity up to 14kOe. This represents a significant improvement compared to the average coercivities in conventional binary PtCo alloys of 5 to 8 kOe.Rapidly solidified specimens of Pt42Co45B13 (at.%) were annealed at 650°C and 800°C for 30 minutes. The magnetic behavior was characterized by measuring the coercive force (Hc). Samples for TEM analysis were mechanically thinned to 100 μm, dimpled to about 30 nm, and ion milled to electron transparency in a Gatan Duomill at 5 kV and 1 mA gun current. The incident ion beam angle was set at 15° and the samples were liquid nitrogen cooled during milling. These samples were analyzed with a Philips CM20T TEM/STEM operated at 200 kV.


2020 ◽  
Vol 64 (1-4) ◽  
pp. 439-446
Author(s):  
Gildas Diguet ◽  
Gael Sebald ◽  
Masami Nakano ◽  
Mickaël Lallart ◽  
Jean-Yves Cavaillé

Magneto Rheological Elastomers (MREs) are composite materials based on an elastomer filled by magnetic particles. Anisotropic MRE can be easily manufactured by curing the material under homogeneous magnetic field which creates column of particles. The magnetic and elastic properties are actually coupled making these MREs suitable for energy conversion. From these remarkable properties, an energy harvesting device is considered through the application of a DC bias magnetic induction on two MREs as a metal piece is applying an AC shear strain on them. Such strain therefore changes the permeabilities of the elastomers, hence generating an AC magnetic induction which can be converted into AC electrical signal with the help of a coil. The device is simulated with a Finite Element Method software to examine the effect of the MRE parameters, the DC bias magnetic induction and applied shear strain (amplitude and frequency) on the resulting electrical signal.


TAPPI Journal ◽  
2018 ◽  
Vol 17 (04) ◽  
pp. 231-240
Author(s):  
Douglas Coffin ◽  
Joel Panek

A transverse shear strain was utilized to characterize the severity of creasing for a wide range of tooling configurations. An analytic expression of transverse shear strain, which accounts for tooling geometry, correlated well with relative crease strength and springback as determined from 90° fold tests. The experimental results show a minimum strain (elastic limit) that needs to be exceeded for the relative crease strength to be reduced. The theory predicts a maximum achievable transverse shear strain, which is further limited if the tooling clearance is negative. The elastic limit and maximum strain thus describe the range of interest for effective creasing. In this range, cross direction (CD)-creased samples were more sensitive to creasing than machine direction (MD)-creased samples, but the differences were reduced as the shear strain approached the maximum. The presented development provides the foundation for a quantitative engineering approach to creasing and folding operations.


Sign in / Sign up

Export Citation Format

Share Document