scholarly journals A Web-Based System for Home Monitoring of Patients With Parkinson's Disease Using Wearable Sensors

2011 ◽  
Vol 58 (3) ◽  
pp. 831-836 ◽  
Author(s):  
Bor-Rong Chen ◽  
S Patel ◽  
T Buckley ◽  
R Rednic ◽  
D J McClure ◽  
...  
PLoS ONE ◽  
2021 ◽  
Vol 16 (2) ◽  
pp. e0246528
Author(s):  
Marco Sica ◽  
Salvatore Tedesco ◽  
Colum Crowe ◽  
Lorna Kenny ◽  
Kevin Moore ◽  
...  

Parkinson’s disease (PD) is a progressive neurological disorder of the central nervous system that deteriorates motor functions, while it is also accompanied by a large diversity of non-motor symptoms such as cognitive impairment and mood changes, hallucinations, and sleep disturbance. Parkinsonism is evaluated during clinical examinations and appropriate medical treatments are directed towards alleviating symptoms. Tri-axial accelerometers, gyroscopes, and magnetometers could be adopted to support clinicians in the decision-making process by objectively quantifying the patient’s condition. In this context, at-home data collections aim to capture motor function during daily living and unobstructedly assess the patients’ status and the disease’s symptoms for prolonged time periods. This review aims to collate existing literature on PD monitoring using inertial sensors while it focuses on papers with at least one free-living data capture unsupervised either directly or via videotapes. Twenty-four papers were selected at the end of the process: fourteen investigated gait impairments, eight of which focused on walking, three on turning, two on falls, and one on physical activity; ten articles on the other hand examined symptoms, including bradykinesia, tremor, dyskinesia, and motor state fluctuations in the on/off phenomenon. In summary, inertial sensors are capable of gathering data over a long period of time and have the potential to facilitate the monitoring of people with Parkinson’s, providing relevant information about their motor status. Concerning gait impairments, kinematic parameters (such as duration of gait cycle, step length, and velocity) were typically used to discern PD from healthy subjects, whereas for symptoms’ assessment, researchers were capable of achieving accuracies of over 90% in a free-living environment. Further investigations should be focused on the development of ad-hoc hardware and software capable of providing real-time feedback to clinicians and patients. In addition, features such as the wearability of the system and user comfort, set-up process, and instructions for use, need to be strongly considered in the development of wearable sensors for PD monitoring.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Gloria Vergara-Diaz ◽  
Jean-Francois Daneault ◽  
Federico Parisi ◽  
Chen Admati ◽  
Christina Alfonso ◽  
...  

AbstractParkinson’s disease (PD) is a neurodegenerative disorder characterized by motor and non-motor symptoms. Dyskinesia and motor fluctuations are complications of PD medications. An objective measure of on/off time with/without dyskinesia has been sought for some time because it would facilitate the titration of medications. The objective of the dataset herein presented is to assess if wearable sensor data can be used to generate accurate estimates of limb-specific symptom severity. Nineteen subjects with PD experiencing motor fluctuations were asked to wear a total of five wearable sensors on both forearms and shanks, as well as on the lower back. Accelerometer data was collected for four days, including two laboratory visits lasting 3 to 4 hours each while the remainder of the time was spent at home and in the community. During the laboratory visits, subjects performed a battery of motor tasks while clinicians rated limb-specific symptom severity. At home, subjects were instructed to use a smartphone app that guided the periodic performance of a set of motor tasks.


Aging ◽  
2021 ◽  
Author(s):  
Yunliang Tang ◽  
Jiao Wang ◽  
Gengfa Chen ◽  
Wen Ye ◽  
Nao Yan ◽  
...  

2017 ◽  
Vol 264 (8) ◽  
pp. 1642-1654 ◽  
Author(s):  
Ana Lígia Silva de Lima ◽  
Luc J. W. Evers ◽  
Tim Hahn ◽  
Lauren Bataille ◽  
Jamie L. Hamilton ◽  
...  

Sensors ◽  
2020 ◽  
Vol 20 (20) ◽  
pp. 5963 ◽  
Author(s):  
Elke Warmerdam ◽  
Robbin Romijnders ◽  
Julius Welzel ◽  
Clint Hansen ◽  
Gerhard Schmidt ◽  
...  

Neurological pathologies can alter the swinging movement of the arms during walking. The quantification of arm swings has therefore a high clinical relevance. This study developed and validated a wearable sensor-based arm swing algorithm for healthy adults and patients with Parkinson’s disease (PwP). Arm swings of 15 healthy adults and 13 PwP were evaluated (i) with wearable sensors on each wrist while walking on a treadmill, and (ii) with reflective markers for optical motion capture fixed on top of the respective sensor for validation purposes. The gyroscope data from the wearable sensors were used to calculate several arm swing parameters, including amplitude and peak angular velocity. Arm swing amplitude and peak angular velocity were extracted with systematic errors ranging from 0.1 to 0.5° and from −0.3 to 0.3°/s, respectively. These extracted parameters were significantly different between healthy adults and PwP as expected based on the literature. An accurate algorithm was developed that can be used in both clinical and daily-living situations. This algorithm provides the basis for the use of wearable sensor-extracted arm swing parameters in healthy adults and patients with movement disorders such as Parkinson’s disease.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Mohammad Rafayet Ali ◽  
Taylor Myers ◽  
Ellen Wagner ◽  
Harshil Ratnu ◽  
E. Ray Dorsey ◽  
...  

AbstractA prevalent symptom of Parkinson’s disease (PD) is hypomimia — reduced facial expressions. In this paper, we present a method for diagnosing PD that utilizes the study of micro-expressions. We analyzed the facial action units (AU) from 1812 videos of 604 individuals (61 with PD and 543 without PD, with a mean age 63.9 y/o, sd. 7.8) collected online through a web-based tool (www.parktest.net). In these videos, participants were asked to make three facial expressions (a smiling, disgusted, and surprised face) followed by a neutral face. Using techniques from computer vision and machine learning, we objectively measured the variance of the facial muscle movements and used it to distinguish between individuals with and without PD. The prediction accuracy using the facial micro-expressions was comparable to methodologies that utilize motor symptoms. Logistic regression analysis revealed that participants with PD had less variance in AU6 (cheek raiser), AU12 (lip corner puller), and AU4 (brow lowerer) than non-PD individuals. An automated classifier using Support Vector Machine was trained on the variances and achieved 95.6% accuracy. Using facial expressions as a future digital biomarker for PD could be potentially transformative for patients in need of remote diagnoses due to physical separation (e.g., due to COVID) or immobility.


Sign in / Sign up

Export Citation Format

Share Document