scholarly journals Limb and trunk accelerometer data collected with wearable sensors from subjects with Parkinson’s disease

2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Gloria Vergara-Diaz ◽  
Jean-Francois Daneault ◽  
Federico Parisi ◽  
Chen Admati ◽  
Christina Alfonso ◽  
...  

AbstractParkinson’s disease (PD) is a neurodegenerative disorder characterized by motor and non-motor symptoms. Dyskinesia and motor fluctuations are complications of PD medications. An objective measure of on/off time with/without dyskinesia has been sought for some time because it would facilitate the titration of medications. The objective of the dataset herein presented is to assess if wearable sensor data can be used to generate accurate estimates of limb-specific symptom severity. Nineteen subjects with PD experiencing motor fluctuations were asked to wear a total of five wearable sensors on both forearms and shanks, as well as on the lower back. Accelerometer data was collected for four days, including two laboratory visits lasting 3 to 4 hours each while the remainder of the time was spent at home and in the community. During the laboratory visits, subjects performed a battery of motor tasks while clinicians rated limb-specific symptom severity. At home, subjects were instructed to use a smartphone app that guided the periodic performance of a set of motor tasks.

2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Jean-Francois Daneault ◽  
Gloria Vergara-Diaz ◽  
Federico Parisi ◽  
Chen Admati ◽  
Christina Alfonso ◽  
...  

AbstractParkinson’s disease (PD) is a neurodegenerative disorder associated with motor and non-motor symptoms. Current treatments primarily focus on managing motor symptom severity such as tremor, bradykinesia, and rigidity. However, as the disease progresses, treatment side-effects can emerge such as on/off periods and dyskinesia. The objective of the Levodopa Response Study was to identify whether wearable sensor data can be used to objectively quantify symptom severity in individuals with PD exhibiting motor fluctuations. Thirty-one subjects with PD were recruited from 2 sites to participate in a 4-day study. Data was collected using 2 wrist-worn accelerometers and a waist-worn smartphone. During Days 1 and 4, a portion of the data was collected in the laboratory while subjects performed a battery of motor tasks as clinicians rated symptom severity. The remaining of the recordings were performed in the home and community settings. To our knowledge, this is the first dataset collected using wearable accelerometers with specific focus on individuals with PD experiencing motor fluctuations that is made available via an open data repository.


2017 ◽  
Vol 56 (02) ◽  
pp. 95-111 ◽  
Author(s):  
Tihomir V. Ilić ◽  
Slađan Milanović ◽  
Veljko Potkonjak ◽  
Aleksandar Rodić ◽  
José Santos-Victor ◽  
...  

SummaryBackground: Traditional rehabilitation sessions are often a slow, tedious, disempowering and non-motivational process, supported by clinical assessment tools, i.e. evaluation scales that are prone to subjective rating and imprecise interpretation of patient’s performance. Poor patient motivation and insufficient accuracy are thus critical factors that can be improved by new sensing/processing technologies.Objectives: We aim to develop a portable and affordable system, suitable for home rehabilitation, which combines vision-based and wearable sensors. We introduce a novel approach for examining and characterizing the rehabilitation movements, using quantitative descriptors. We propose new Movement Performance Indicators (MPIs) that are extracted directly from sensor data and quantify the symmetry, velocity, and acceleration of the movement of different body/hand parts, and that can potentially be used by therapists for diagnosis and progress assessment.Methods: First, a set of rehabilitation exercises is defined, with the supervision of neurologists and therapists for the specific case of Parkinson’s disease. It comprises full-body movements measured with a Kinect device and fine hand movements, acquired with a data glove. Then, the sensor data is used to compute 25 Movement Performance Indicators, to assist the diagnosis and progress monitoring (assessing the disease stage) in Parkinson’s disease. A kinematic hand model is developed for data verification and as an additional resource for extracting supplementary movement information.Results: Our results show that the proposed Movement Performance Indicators are relevant for the Parkinson’s disease assessment. This is further confirmed by correlation of the proposed indicators with clinical tapping test and UPDRS clinical scale. Classification results showed the potential of these indicators to discriminate between the patients and controls, as well as between the stages that characterize the evolution of the disease.Conclusions: The proposed sensor system, along with the developed approach for rehabilitation movement analysis have a significant potential to support and advance traditional rehabilitation therapy. The main impact of our work is two-fold: (i) the proposition of an approach for supporting the therapists during the diagnosis and monitoring evaluations by reducing subjectivity and imprecision, and (ii) offering the possibility of the system to be used at home for rehabilitation exercises in between sessions with doctors and therapists.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Jamie L. Adams ◽  
Karthik Dinesh ◽  
Christopher W. Snyder ◽  
Mulin Xiong ◽  
Christopher G. Tarolli ◽  
...  

AbstractMost wearable sensor studies in Parkinson’s disease have been conducted in the clinic and thus may not be a true representation of everyday symptoms and symptom variation. Our goal was to measure activity, gait, and tremor using wearable sensors inside and outside the clinic. In this observational study, we assessed motor features using wearable sensors developed by MC10, Inc. Participants wore five sensors, one on each limb and on the trunk, during an in-person clinic visit and for two days thereafter. Using the accelerometer data from the sensors, activity states (lying, sitting, standing, walking) were determined and steps per day were also computed by aggregating over 2 s walking intervals. For non-walking periods, tremor durations were identified that had a characteristic frequency between 3 and 10 Hz. We analyzed data from 17 individuals with Parkinson’s disease and 17 age-matched controls over an average 45.4 h of sensor wear. Individuals with Parkinson’s walked significantly less (median [inter-quartile range]: 4980 [2835–7163] steps/day) than controls (7367 [5106–8928] steps/day; P = 0.04). Tremor was present for 1.6 [0.4–5.9] hours (median [range]) per day in most-affected hands (MDS-UPDRS 3.17a or 3.17b = 1–4) of individuals with Parkinson’s, which was significantly higher than the 0.5 [0.3–2.3] hours per day in less-affected hands (MDS-UPDRS 3.17a or 3.17b = 0). These results, which require replication in larger cohorts, advance our understanding of the manifestations of Parkinson’s in real-world settings.


Sensors ◽  
2021 ◽  
Vol 21 (23) ◽  
pp. 7876
Author(s):  
Jeroen G. V. Habets ◽  
Christian Herff ◽  
Pieter L. Kubben ◽  
Mark L. Kuijf ◽  
Yasin Temel ◽  
...  

Motor fluctuations in Parkinson’s disease are characterized by unpredictability in the timing and duration of dopaminergic therapeutic benefits on symptoms, including bradykinesia and rigidity. These fluctuations significantly impair the quality of life of many Parkinson’s patients. However, current clinical evaluation tools are not designed for the continuous, naturalistic (real-world) symptom monitoring needed to optimize clinical therapy to treat fluctuations. Although commercially available wearable motor monitoring, used over multiple days, can augment neurological decision making, the feasibility of rapid and dynamic detection of motor fluctuations is unclear. So far, applied wearable monitoring algorithms are trained on group data. In this study, we investigated the influence of individual model training on short timescale classification of naturalistic bradykinesia fluctuations in Parkinson’s patients using a single-wrist accelerometer. As part of the Parkinson@Home study protocol, 20 Parkinson patients were recorded with bilateral wrist accelerometers for a one hour OFF medication session and a one hour ON medication session during unconstrained activities in their own homes. Kinematic metrics were extracted from the accelerometer data from the bodyside with the largest unilateral bradykinesia fluctuations across medication states. The kinematic accelerometer features were compared over the 1 h duration of recording, and medication-state classification analyses were performed on 1 min segments of data. Then, we analyzed the influence of individual versus group model training, data window length, and total number of training patients included in group model training, on classification. Statistically significant areas under the curves (AUCs) for medication induced bradykinesia fluctuation classification were seen in 85% of the Parkinson patients at the single minute timescale using the group models. Individually trained models performed at the same level as the group trained models (mean AUC both 0.70, standard deviation respectively 0.18 and 0.10) despite the small individual training dataset. AUCs of the group models improved as the length of the feature windows was increased to 300 s, and with additional training patient datasets. We were able to show that medication-induced fluctuations in bradykinesia can be classified using wrist-worn accelerometry at the time scale of a single minute. Rapid, naturalistic Parkinson motor monitoring has the clinical potential to evaluate dynamic symptomatic and therapeutic fluctuations and help tailor treatments on a fast timescale.


2009 ◽  
Vol 13 (6) ◽  
pp. 864-873 ◽  
Author(s):  
S. Patel ◽  
K. Lorincz ◽  
R. Hughes ◽  
N. Huggins ◽  
J. Growdon ◽  
...  

2021 ◽  
Vol 11 (7) ◽  
pp. 680
Author(s):  
Vinod Metta ◽  
Lucia Batzu ◽  
Valentina Leta ◽  
Dhaval Trivedi ◽  
Aleksandra Powdleska ◽  
...  

Parkinson’s disease (PD) is a chronic, progressive neurological disorder and the second most common neurodegenerative condition. Advanced PD is complicated by erratic gastric absorption, delayed gastric emptying in turn causing medication overload, and hence the emergence of motor and non-motor fluctuations and dyskinesia, which is initially predictable and then becomes unpredictable. As the patient progresses to the advanced stage, advanced Parkinson’s disease (APD) is characterized by refractory motor and non motor fluctuations, unpredictable OFF periods, and troublesome dyskinesias The management of APD is a complex affair. There is growing recognition that GI dysfunction is common in PD, with virtually the entire GI system (the upper and lower GI tracts) causing problems from dribbling to defecation. The management of PD should focus on personalized care addressing both motor and non-motor symptoms, ideally including not only dopamine replacement but also associated non-dopaminergic circuits, particularly focusing on noradrenergic, serotonergic, and cholinergic therapies bypassing the gastrointestinal tract (GIT) by infusion or device-aided therapies (DAT), including levodopa–carbidopa intestinal gel infusion, apomorphine subcutaneous infusion, and deep brain stimulation, which are available in many countries for the management of the advanced stage of Parkinson’s disease (APD). The PKG (KinetiGrap) can be used as a continuous objective monitoring (COM) aid, as a screening tool to help to identify advanced PD (APD) patients suitable for DAT, and can thus improve clinical outcomes.


Motor Control ◽  
2019 ◽  
Vol 23 (4) ◽  
pp. 445-460
Author(s):  
Anne Sofie B. Malling ◽  
Bo M. Morberg ◽  
Lene Wermuth ◽  
Ole Gredal ◽  
Per Bech ◽  
...  

The authors examined the associations between the performance of upper- and lower-extremity motor tasks across task complexity and motor symptom severity, overall disease severity, and the physical aspects of quality of life in persons with Parkinson’s disease. The performance was assessed for three lower-extremity tasks and two upper-extremity tasks of different levels of complexity. The motor symptoms and overall disease severity correlated significantly with all motor tasks with higher correlation coefficients in the complex tasks. Thus, the strength of the association between disease severity or severity of motor symptoms and motor performance is task-specific, with higher values in complex motor tasks than in simpler motor tasks. Mobility-related and activity-of-daily-living-related quality of life correlated with lower-extremity tasks of low and medium complexity and with the complex upper-extremity task, respectively; this suggests that Parkinson’s Disease Questionnaire-39 is capable of differentiating between the impact of gross and fine motor function on quality of life.


2019 ◽  
Vol 5 (1) ◽  
Author(s):  
Margot Heijmans ◽  
Jeroen G. V. Habets ◽  
Christian Herff ◽  
Jos Aarts ◽  
An Stevens ◽  
...  

Abstract Parkinson’s disease symptoms are most often charted using the MDS-UPDRS. Limitations of this approach include the subjective character of the assessments and a discrepant performance in the clinic compared to the home situation. Continuous monitoring using wearable devices is believed to eventually replace this golden standard, but measurements often lack a parallel ground truth or are only tested in lab settings. To overcome these limitations, this study explores the feasibility of a newly developed Parkinson’s disease monitoring system, which aims to measure Parkinson’s disease symptoms during daily life by combining wearable sensors with an experience sampling method application. Twenty patients with idiopathic Parkinson’s disease participated in this study. During a period of two consecutive weeks, participants had to wear three wearable sensors and had to complete questionnaires at seven semi-random moments per day on their mobile phone. Wearable sensors collected objective movement data, and the questionnaires containing questions about amongst others Parkinson’s disease symptoms served as parallel ground truth. Results showed that participants wore the wearable sensors during 94% of the instructed timeframe and even beyond. Furthermore, questionnaire completion rates were high (79,1%) and participants evaluated the monitoring system positively. A preliminary analysis showed that sensor data could reliably predict subjectively reported OFF moments. These results show that our Parkinson’s disease monitoring system is a feasible method to use in a diverse Parkinson’s disease population for at least a period of two weeks. For longer use, the monitoring system may be too intense and wearing comfort needs to be optimized.


Sign in / Sign up

Export Citation Format

Share Document