Low-Complexity Link Microarchitecture for Mesochronous Communication in Networks-on-Chip

2008 ◽  
Vol 57 (9) ◽  
pp. 1196-1201 ◽  
Author(s):  
Francesco Vitullo ◽  
Nicola E. L'Insalata ◽  
Esa Petri ◽  
Sergio Saponara ◽  
Luca Fanucci ◽  
...  
2014 ◽  
Vol 36 (5) ◽  
pp. 988-1003 ◽  
Author(s):  
Shuai ZHANG ◽  
Feng-Long SONG ◽  
Dong WANG ◽  
Zhi-Yong LIU ◽  
Dong-Rui FAN

2018 ◽  
Vol 8 (4) ◽  
pp. 39 ◽  
Author(s):  
Franco Fuschini ◽  
Marina Barbiroli ◽  
Marco Zoli ◽  
Gaetano Bellanca ◽  
Giovanna Calò ◽  
...  

Multi-core processors are likely to be a point of no return to meet the unending demand for increasing computational power. Nevertheless, the physical interconnection of many cores might currently represent the bottleneck toward kilo-core architectures. Optical wireless networks on-chip are therefore being considered as promising solutions to overcome the technological limits of wired interconnects. In this work, the spatial properties of the on-chip wireless channel are investigated through a ray tracing approach applied to a layered representation of the chip structure, highlighting the relationship between path loss, antenna positions and radiation properties.


Micromachines ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 54
Author(s):  
Yan-Li Zheng ◽  
Ting-Ting Song ◽  
Jun-Xiong Chai ◽  
Xiao-Ping Yang ◽  
Meng-Meng Yu ◽  
...  

The photoelectric hybrid network has been proposed to achieve the ultrahigh bandwidth, lower delay, and less power consumption for chip multiprocessor (CMP) systems. However, a large number of optical elements used in optical networks-on-chip (ONoCs) generate high transmission loss which will influence network performance severely and increase power consumption. In this paper, the Dijkstra algorithm is adopted to realize adaptive routing with minimum transmission loss of link and reduce the output power of the link transmitter in mesh-based ONoCs. The numerical simulation results demonstrate that the transmission loss of a link in optimized power control based on the Dijkstra algorithm could be maximally reduced compared with traditional power control based on the dimensional routing algorithm. Additionally, it has a greater advantage in saving the average output power of optical transmitter compared to the adaptive power control in previous studies, while the network size expands. With the aid of simulation software OPNET, the network performance simulations in an optimized network revealed that the end-to-end (ETE) latency and throughput are not vastly reduced in regard to a traditional network. Hence, the optimized power control proposed in this paper can greatly reduce the power consumption of s network without having a big impact on network performance.


Micromachines ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 183
Author(s):  
Jose Ricardo Gomez-Rodriguez ◽  
Remberto Sandoval-Arechiga ◽  
Salvador Ibarra-Delgado ◽  
Viktor Ivan Rodriguez-Abdala ◽  
Jose Luis Vazquez-Avila ◽  
...  

Current computing platforms encourage the integration of thousands of processing cores, and their interconnections, into a single chip. Mobile smartphones, IoT, embedded devices, desktops, and data centers use Many-Core Systems-on-Chip (SoCs) to exploit their compute power and parallelism to meet the dynamic workload requirements. Networks-on-Chip (NoCs) lead to scalable connectivity for diverse applications with distinct traffic patterns and data dependencies. However, when the system executes various applications in traditional NoCs—optimized and fixed at synthesis time—the interconnection nonconformity with the different applications’ requirements generates limitations in the performance. In the literature, NoC designs embraced the Software-Defined Networking (SDN) strategy to evolve into an adaptable interconnection solution for future chips. However, the works surveyed implement a partial Software-Defined Network-on-Chip (SDNoC) approach, leaving aside the SDN layered architecture that brings interoperability in conventional networking. This paper explores the SDNoC literature and classifies it regarding the desired SDN features that each work presents. Then, we described the challenges and opportunities detected from the literature survey. Moreover, we explain the motivation for an SDNoC approach, and we expose both SDN and SDNoC concepts and architectures. We observe that works in the literature employed an uncomplete layered SDNoC approach. This fact creates various fertile areas in the SDNoC architecture where researchers may contribute to Many-Core SoCs designs.


Author(s):  
Anup Gangwar ◽  
Nitin Kumar Agarwal ◽  
Ravishankar Sreedharan ◽  
Ambica Prasad ◽  
Sri Harsha Gade ◽  
...  

2016 ◽  
Vol 34 (15) ◽  
pp. 3550-3562 ◽  
Author(s):  
Yiyuan Xie ◽  
Tingting Song ◽  
Zhendong Zhang ◽  
Chao He ◽  
Jiachao Li ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document