Distributed Time-Varying Output Formation Control for General Linear Multiagent Systems With Directed Topology

2019 ◽  
Vol 6 (2) ◽  
pp. 609-620 ◽  
Author(s):  
Rui Wang ◽  
Xiwang Dong ◽  
Qingdong Li ◽  
Zhang Ren
2019 ◽  
Vol 07 (01) ◽  
pp. 3-13 ◽  
Author(s):  
Wei Xiao ◽  
Jianglong Yu ◽  
Rui Wang ◽  
Xiwang Dong ◽  
Qingdong Li ◽  
...  

Time-varying formation analysis and design problems for general linear multi-agent systems with switching interaction topologies and time-varying delays are studied. Firstly, a consensus-based formation control protocol is constructed using local information of the neighboring agents. An algorithm with three steps is presented to design the proposed formation control protocol. Then, based on linear matrix inequality technique and common Lyapunove–Krasovskii stability theory, sufficient conditions for general linear multi-agent systems with switching topologies and time-varying delays to achieve time-varying formation are given together with a time-varying formation feasibility condition. Finally, a numerical simulation is given to demonstrate the effectiveness of the obtained theoretical results.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Wanzhen Quan ◽  
Yulong Zhao ◽  
Le Wang ◽  
Xiaogang Yang

The energy-limited time-varying formation (ETVF) control problem of second-order multiagent systems (MAS) is addressed for both leaderless and leader-following communication topologies in this paper. Different from the previous results, the joint consideration of energy limitation and formation design is more challenging and practical. First, an ETVF control protocol is presented, and the total energy supply is pregiven and limited, which is more common in practical applications. Then, by an orthogonal transformation, the formation control problem is converted into the consensus stabilization problem for second-order leaderless MAS, where sufficient conditions for the ETVF are derived by joint design of control gains and the total energy. At the same time, the explicit formula that forms the formation center function is obtained to depict the macroscopic movement of the multiagent system as a whole. Moreover, the proposed method is also extended to the leader-following communication structure. Finally, two examples are given to verify the effectiveness of our theoretical results.


Sign in / Sign up

Export Citation Format

Share Document