scholarly journals Low-Complexity Channel Estimation and Passive Beamforming for RIS-Assisted MIMO Systems Relying on Discrete Phase Shifts

Author(s):  
Jiancheng An ◽  
Chao Xu ◽  
Lu Gan ◽  
Lajos Hanzo
Author(s):  
Xiao Chen ◽  
Zaichen Zhang ◽  
Liang Wu ◽  
Jian Dang

Abstract In this journal, we investigate the beam-domain channel estimation and power allocation in hybrid architecture massive multiple-input and multiple-output (MIMO) communication systems. First, we propose a low-complexity channel estimation method, which utilizes the beam steering vectors achieved from the direction-of-arrival (DOA) estimation and beam gains estimated by low-overhead pilots. Based on the estimated beam information, a purely analog precoding strategy is also designed. Then, the optimal power allocation among multiple beams is derived to maximize spectral efficiency. Finally, simulation results show that the proposed schemes can achieve high channel estimation accuracy and spectral efficiency.


2019 ◽  
Vol 8 (4) ◽  
pp. 1103-1107 ◽  
Author(s):  
Xianda Wu ◽  
Guanghua Yang ◽  
Fen Hou ◽  
Shaodan Ma

Electronics ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 582
Author(s):  
Feng Hu ◽  
Kaiyue Wang ◽  
Shufeng Li ◽  
Libiao Jin

This paper proposes a dynamic resource allocation scheme to maximize the energy efficiency (EE) for Massive MIMO Systems. The imperfect channel estimation (CE) and feedback are explicitly considered in the EE maximization problem, which aim to optimize the power allocation, the antenna subset selection for transmission, and the pilot assignment. Assuming CE error to be bounded for the complex-constrained Cramer–Rao Bound (CRB), theoretical results show that the lower bound is directly proportional to its number of unconstrained parameters. Utilizing this perspective, a separated and bi-directional estimation is developed to achieve both low CRB and low complexity by exploiting channel and noise spatial separation. Exploiting global optimization procedure, the optimal resource allocation can be transformed into a standard convex optimization problem. This allows us to derive an efficient iterative algorithm for obtaining the optimal solution. Numerical results are provided to demonstrate that the outperformance of the proposed algorithms are superior to existing schemes.


Sign in / Sign up

Export Citation Format

Share Document