scholarly journals The Origin of Nonlinear Phenomena in TCR-SVC Associated With Parametric Excitation of Intrinsic Oscillation and External Excitation

2008 ◽  
Vol 55 (9) ◽  
pp. 2952-2958 ◽  
Author(s):  
T. Funaki ◽  
K. Nakagawa ◽  
T. Hikihara
2005 ◽  
Vol 127 (1) ◽  
pp. 36-43 ◽  
Author(s):  
Chung Hwan Kim ◽  
Chong-Won Lee ◽  
N. C. Perkins

This study is motivated by the vibrations that plague coating processes used in the manufacturing of coated sheet metal. These vibrations arise from time-dependent tension fluctuations within the sheet metal plate as well as from the eccentricity of the rollers used to transport the plate. The time-dependent tension is observed to be rather broad-band and creates multi-frequency parametric excitation. By contrast, the roller eccentricity is largely single-frequency (synchronized with the roller speed) and creates single-frequency external excitation. The plate and excitation sources are studied herein using a single-degree-of-freedom model with a cubic nonlinearity, subject to combined parametric and external excitation. In our study, we investigate the resonances that arise from the synergistic effects of multi-frequency parametric excitation and single-frequency external excitation. For the simpler case of single-frequency parametric excitation, we observe both sum and difference combination resonances in addition to principal parametric resonance. For the case of multi-frequency parametric excitation, we observe a frequency shift for the parametric resonance that derives from the cubic nonlinearity and external excitation. Moreover, the phase relationships of the external and each parametric excitation source have a significant effect on the resulting response amplitude. We use these analyses to explain the resonance mechanisms observed in experiments conducted on an example sheet metal coating process.


Author(s):  
Chung Hwan Kim ◽  
Chong-Won Lee ◽  
N. C. Perkins

This study in motivated by the vibrations that plague coating processes used in the manufacturing of coated sheet metal. These vibrations arise from time-dependent tension fluctuations within the sheet metal plate as well as from the eccentricity of the rollers used to transport the plate. The time-dependent tension is observed to be rather broad-band and creates multi-frequency parametric excitation. By contrast, the roller eccentricity is largely single-frequency (synchronized with the roller speed) and creates single-frequency external excitation. The plate and excitation sources are studied herein using a single-degree-of-freedom model with a cubic nonlinearity, subject to combined parametric and external excitation. In our study, we investigate the resonances that arise from the synergistic effects of multi-frequency parametric excitation and single-frequency external excitation. For the simpler case of single-frequency parametric excitation, we observe both sum and difference combination resonances in addition to principal parametric resonance. For the case of multi-frequency parametric excitation, we observe a frequency shift for the parametric resonance that derives from the cubic nonlinearity and external excitation. Moreover, the phase relationships of the external and each parametric excitation source have a significant effect on the resulting response amplitude. We use these analyses to explain the resonance mechanisms observed in experiments conducted on an example sheet metal coating process.


2017 ◽  
Vol 12 (4) ◽  
Author(s):  
Siu-Siu Guo ◽  
Qing-Xuan Shi ◽  
Hai-Tao Zhu

This paper investigates the influences of nonzero mean Poisson impulse amplitudes on the response statistics of dynamical systems. New correction terms of the extended Itô calculus, as a generalization of the Wong–Zakai correction terms in the case of normal excitations, are adopted to consider the non-normal property in the case of Poisson process. Due to these new correction terms, the corresponding drift and diffusion coefficients of Fokker–Planck–Kolmogorov (FPK) equation have to be modified and they become more complicated. Herein, the exponential–polynomial closure (EPC) method is employed to solve such a complex FPK equation. Since there are no exact solutions, the efficiency of the EPC method is numerically evaluated by the simulation results. Three examples of different excitation patterns are considered. Numerical results indicate that the influence of nonzero mean impulse amplitudes on system responses depends on the excitation patterns. It is negligible in the case of parametric excitation on displacement. On the contrary, the influence becomes significant in the cases of external excitation and parametric excitation on velocity.


2017 ◽  
Vol 27 (02) ◽  
pp. 1750017 ◽  
Author(s):  
Bamadev Sahoo ◽  
L. N. Panda ◽  
G. Pohit

Analytical-numerical approach has been adopted to investigate the stability, bifurcation and dynamic behavior (including chaotic behavior) of axially moving viscoelastic beam subjected to parametric excitation resulting from speed variation in the presence of 3:1 internal resonance between the first two modes of vibration. The governing equation of transverse vibration is a nonlinear integro-partial-differential equation with time-dependent coefficients. The direct method of multiple scales is employed to analyze the joint influence of the combination of parametric resonance and internal resonance with the focus on steady state responses. Equilibrium solutions along with their stability and bifurcations are determined by continuation algorithm while direct time integration is used for dynamic behavior for various system parameters. The results are compared with the previous works depicting the principal parametric resonances of the first and second modes. Significant comparative analysis results are reported in the stability and bifurcation of frequency response analysis. The dynamic responses show a range of behavior viz. stable periodic, mixed mode, quasiperiodic and unstable chaotic motion of the system. Numerical results illustrate various typical and interesting nonlinear phenomena of the traveling system which are not found in the existent literature.


Sign in / Sign up

Export Citation Format

Share Document