Correction to Section V-B of “Contraction Theory and the Master Stability Function: Linking Two Approaches to Study Synchronization in Complex Networks” [Feb 09 177-181]

2014 ◽  
Vol 61 (11) ◽  
pp. 915-915
Author(s):  
Giovanni Russo ◽  
Mario di Bernardo
1999 ◽  
Vol 09 (12) ◽  
pp. 2315-2320 ◽  
Author(s):  
LOUIS M. PECORA ◽  
THOMAS L. CARROLL

We show that many coupled oscillator array configurations considered in the literature can be put into a simple form so that determining the stability of the synchronous state can be done by a master stability function which solves, once and for all, the problem of synchronous stability for many couplings of that oscillator.


2020 ◽  
Vol 30 (08) ◽  
pp. 2050123
Author(s):  
Zahra Faghani ◽  
Zhen Wang ◽  
Fatemeh Parastesh ◽  
Sajad Jafari ◽  
Matjaž Perc

Synchronization in complex networks is an evergreen subject with many practical applications across the natural and social sciences. The stability of synchronization is thereby crucial for determining whether the dynamical behavior is stable or not. The master stability function is commonly used to that effect. In this paper, we study whether there is a relation between the stability of synchronization and the proximity to certain bifurcation types. We consider four different nonlinear dynamical systems, and we determine their master stability functions in dependence on key bifurcation parameters. We also calculate the corresponding bifurcation diagrams. By means of systematic comparisons, we show that, although there are some variations in the master stability functions in dependence on bifurcation proximity and type, there is in fact no general relation between synchronization stability and bifurcation type. This has important implication for the restrained generalizability of findings concerning synchronization in complex networks for one type of node dynamics to others.


2019 ◽  
Vol 4 (1) ◽  
Author(s):  
Yi Ming Lai ◽  
Joshua Veasy ◽  
Stephen Coombes ◽  
Rüdiger Thul

Abstract During a single heartbeat, muscle cells in the heart contract and relax. Under healthy conditions, the behaviour of these muscle cells is almost identical from one beat to the next. However, this regular rhythm can be disturbed giving rise to a variety of cardiac arrhythmias including cardiac alternans. Here, we focus on so-called microscopic calcium alternans and show how their complex spatial patterns can be understood with the help of the master stability function. Our work makes use of the fact that cardiac muscle cells can be conceptualised as a network of networks, and that calcium alternans correspond to an instability of the synchronous network state. In particular, we demonstrate how small changes in the coupling strength between network nodes can give rise to drastically different activity patterns in the network.


2016 ◽  
Vol 27 (6) ◽  
pp. 904-922 ◽  
Author(s):  
STEPHEN COOMBES ◽  
RÜDIGER THUL

The master stability function is a powerful tool for determining synchrony in high-dimensional networks of coupled limit cycle oscillators. In part, this approach relies on the analysis of a low-dimensional variational equation around a periodic orbit. For smooth dynamical systems, this orbit is not generically available in closed form. However, many models in physics, engineering and biology admit to non-smooth piece-wise linear caricatures, for which it is possible to construct periodic orbits without recourse to numerical evolution of trajectories. A classic example is the McKean model of an excitable system that has been extensively studied in the mathematical neuroscience community. Understandably, the master stability function cannot be immediately applied to networks of such non-smooth elements. Here, we show how to extend the master stability function to non-smooth planar piece-wise linear systems, and in the process demonstrate that considerable insight into network dynamics can be obtained. In illustration, we highlight an inverse period-doubling route to synchrony, under variation in coupling strength, in globally linearly coupled networks for which the node dynamics is poised near a homoclinic bifurcation. Moreover, for a star graph, we establish a mechanism for achieving so-called remote synchronisation (where the hub oscillator does not synchronise with the rest of the network), even when all the oscillators are identical. We contrast this with node dynamics close to a non-smooth Andronov–Hopf bifurcation and also a saddle node bifurcation of limit cycles, for which no such bifurcation of synchrony occurs.


Sign in / Sign up

Export Citation Format

Share Document