coupled oscillator
Recently Published Documents


TOTAL DOCUMENTS

568
(FIVE YEARS 68)

H-INDEX

44
(FIVE YEARS 5)

Author(s):  
Seiji MIZUNO

Abstract We analytically study the Fano resonance in a simple coupled oscillator system. We demonstrate directly from the equation of motion that the resonance profile observed in this system is generally described by the Fano formula with a complex Fano parameter. The analytical expressions are derived for the resonance frequency, resonance width, and Fano parameter, and the conditions under which the Fano parameter becomes a real number are examined. These expressions for the simple system are also expected to be helpful for considering various other physical systems because the Fano resonance is a general wave phenomenon.


2021 ◽  
Author(s):  
◽  
Nigel Lawrence Holland

<p>The subject is introduced by considering the treatment of oscillators in Mathematics from the simple Poincar´e oscillator, a single variable dynamical process defined on a circle, to the oscillatory dynamics of systems of differential equations. Some models of real oscillator systems are considered. Noise processes are included in the dynamics of the system. Coupling between oscillators is investigated both in terms of analytical systems and as coupled oscillator models. It is seen that driven oscillators can be used as a model of 2 coupled oscillators in 2 and 3 dimensions due to the dependence of the dynamics on the phase difference of the oscillators. This means that the dynamics are easily able to be modelled by a 1D or 2D map. The analysis of N coupled oscillator systems is also described. The human cardiovascular system is studied as an example of a coupled oscillator system. The heart oscillator system is described by a system of delay differential equations and the dynamics characterised. The mechanics of the coupling with the respiration is described. In particular the model of the heart oscillator includes the baroreceptor reflex with time delay whereby the aortic fluid pressure influences the heart rate and the peripheral resistance. Respiration is modelled as forcing the heart oscillator system. Locking zones caused by respiratory sinus arrhythmia (RSA), the synchronisation of the heart with respiration, are found by plotting the rotation number against respiration frequency. These are seen to be relatively narrow for typical physiological parameters and only occur for low ratios of heart rate to respiration frequency. Plots of the diastolic pressure and heart interval in terms of respiration phase parameterised by respiration frequency illustrate the dynamics of synchronisation in the human cardiovascular system.</p>


2021 ◽  
Author(s):  
◽  
Nigel Lawrence Holland

<p>The subject is introduced by considering the treatment of oscillators in Mathematics from the simple Poincar´e oscillator, a single variable dynamical process defined on a circle, to the oscillatory dynamics of systems of differential equations. Some models of real oscillator systems are considered. Noise processes are included in the dynamics of the system. Coupling between oscillators is investigated both in terms of analytical systems and as coupled oscillator models. It is seen that driven oscillators can be used as a model of 2 coupled oscillators in 2 and 3 dimensions due to the dependence of the dynamics on the phase difference of the oscillators. This means that the dynamics are easily able to be modelled by a 1D or 2D map. The analysis of N coupled oscillator systems is also described. The human cardiovascular system is studied as an example of a coupled oscillator system. The heart oscillator system is described by a system of delay differential equations and the dynamics characterised. The mechanics of the coupling with the respiration is described. In particular the model of the heart oscillator includes the baroreceptor reflex with time delay whereby the aortic fluid pressure influences the heart rate and the peripheral resistance. Respiration is modelled as forcing the heart oscillator system. Locking zones caused by respiratory sinus arrhythmia (RSA), the synchronisation of the heart with respiration, are found by plotting the rotation number against respiration frequency. These are seen to be relatively narrow for typical physiological parameters and only occur for low ratios of heart rate to respiration frequency. Plots of the diastolic pressure and heart interval in terms of respiration phase parameterised by respiration frequency illustrate the dynamics of synchronisation in the human cardiovascular system.</p>


2021 ◽  
pp. 179-207
Author(s):  
Michele Bonnin ◽  
Fabio Lorenzo Traversa ◽  
Fabrizio Bonani

2021 ◽  
Vol 150 (4) ◽  
pp. A211-A211
Author(s):  
Connor Robertson ◽  
Gretchen Schowalter ◽  
Steve Tufte

Symmetry ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1745
Author(s):  
Shintaro Murakami ◽  
Okuto Ikeda ◽  
Yusuke Hirukawa ◽  
Toshiharu Saiki

We evaluate a coupled oscillator solver by applying it to square lattice (N × N) Ising spin problems for N values up to 50. The Ising problems are converted to a classical coupled oscillator model that includes both positive (ferromagnetic-like) and negative (antiferromagnetic-like) coupling between neighboring oscillators (i.e., they are reduced to eigenmode problems). A map of the oscillation amplitudes of lower-frequency eigenmodes enables us to visualize oscillator clusters with a low frustration density (unfrustrated clusters). We found that frustration tends to localize at the boundary between unfrustrated clusters due to the symmetric and asymmetric nature of the eigenmodes. This allows us to reduce frustration simply by flipping the sign of the amplitude of oscillators around which frustrated couplings are highly localized. For problems with N = 20 to 50, the best solutions with an accuracy of 96% (with respect to the exact ground state) can be obtained by simply checking the lowest ~N/2 candidate eigenmodes.


2021 ◽  
Vol 376 (1835) ◽  
pp. 20200324
Author(s):  
Michael D. Greenfield ◽  
Henkjan Honing ◽  
Sonja A. Kotz ◽  
Andrea Ravignani

This theme issue assembles current studies that ask how and why precise synchronization and related forms of rhythm interaction are expressed in a wide range of behaviour. The studies cover human activity, with an emphasis on music, and social behaviour, reproduction and communication in non-human animals. In most cases, the temporally aligned rhythms have short—from several seconds down to a fraction of a second—periods and are regulated by central nervous system pacemakers, but interactions involving rhythms that are 24 h or longer and originate in biological clocks also occur. Across this spectrum of activities, species and time scales, empirical work and modelling suggest that synchrony arises from a limited number of coupled-oscillator mechanisms with which individuals mutually entrain. Phylogenetic distribution of these common mechanisms points towards convergent evolution. Studies of animal communication indicate that many synchronous interactions between the signals of neighbouring individuals are specifically favoured by selection. However, synchronous displays are often emergent properties of entrainment between signalling individuals, and in some situations, the very signallers who produce a display might not gain any benefit from the collective timing of their production. This article is part of the theme issue ‘Synchrony and rhythm interaction: from the brain to behavioural ecology’.


2021 ◽  
Vol 104 (2) ◽  
Author(s):  
Oleh E. Omel'chenko ◽  
Jorge Luis Ocampo-Espindola ◽  
István Z. Kiss
Keyword(s):  

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
H. Shanak ◽  
H. Khalilia ◽  
R. Jarrar ◽  
J. Asad

Abstract Problems involving vibrations (mechanical or electrical) can be reduced to problems of coupled oscillators. For this, we consider the motion of coupled oscillators system using Lagrangian method. The Lagrangian of the system was initially constructed, and then the Euler-Lagrange equations (i.e., equations of motion of the system) have been obtained. The obtained equations of motion are a homogenous second-order equation. These equations were solved numerically using the ode45 code, which is based on Runge-Kutta method.


Sign in / Sign up

Export Citation Format

Share Document