Formation Control and Trajectory Tracking of Nonholonomic Mobile Robots

2018 ◽  
Vol 26 (6) ◽  
pp. 2250-2258 ◽  
Author(s):  
Akshit Saradagi ◽  
Vijay Muralidharan ◽  
Vishaal Krishnan ◽  
Sandeep Menta ◽  
Arun D. Mahindrakar
2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Caihong Zhang ◽  
Tairen Sun ◽  
Yongping Pan

This paper addresses the leader-following formation problem of nonholonomic mobile robots. In the formation, only the pose (i.e., the position and direction angle) of the leader robot can be obtained by the follower. First, the leader-following formation is transformed into special trajectory tracking. And then, a neural network (NN) finite-time observer of the follower robot is designed to estimate the dynamics of the leader robot. Finally, finite-time formation control laws are developed for the follower robot to track the leader robot in the desired separation and bearing in finite time. The effectiveness of the proposed NN finite-time observer and the formation control laws are illustrated by both qualitative analysis and simulation results.


2014 ◽  
Vol 47 (3) ◽  
pp. 5709-5714 ◽  
Author(s):  
Aurelio Lima ◽  
Josiel A. Gouvea ◽  
Fernando Lizarralde ◽  
Liu Hsu

2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Zhaoxia Peng ◽  
Shichun Yang ◽  
Guoguang Wen ◽  
Ahmed Rahmani

This paper investigates the distributed consensus-based robust adaptive formation control for nonholonomic mobile robots with partially known dynamics. Firstly, multirobot formation control problem has been converted into a state consensus problem. Secondly, the practical control strategies, which incorporate the distributed kinematic controllers and the robust adaptive torque controllers, are designed for solving the formation control problem. Thirdly, the specified reference trajectory for the geometric centroid of the formation is assumed as the trajectory of a virtual leader, whose information is available to only a subset of the followers. Finally, numerical results are provided to illustrate the effectiveness of the proposed control approaches.


Sign in / Sign up

Export Citation Format

Share Document