The impacts of plug-in hybrid electric vehicles and renewable power penetration into distribution systems

Author(s):  
D. Q. Oliveira ◽  
P. B. L. Neto ◽  
O. Saavedra ◽  
L. F. N. Delboni ◽  
B. I. L. Lima
2020 ◽  
Vol 12 (15) ◽  
pp. 6046
Author(s):  
Ahad Abessi ◽  
Elham Shirazi ◽  
Shahram Jadid ◽  
Miadreza Shafie-khah

Nowadays, due to the increasing number of disasters, improving distribution system resiliency is a new challenging issue for researchers. One of the main methods for improving the resiliency in distribution systems is to supply critical loads after disasters during the power outage and before system restorations. In this paper, a “Sustainable and resilient smart house” is introduced for the first time by using plug-in hybrid electric vehicles (PHEVs). PHEVs have the ability to use their fuel for generating electricity in emergency situations as the Vehicle to Grid (V2G) scheme. This ability, besides smart house control management, provides an opportunity for distribution system operators to use their extra energy for supplying a critical load in the system. The proposed control strategy in this paper is dedicated to a short duration power outage, which includes a large percent of the events. Then, improvement of the resiliency of distribution systems is investigated through supplying smart residential customers and injecting extra power to the main grid. A novel formulation is proposed for increasing the injected power of the smart house to the main grid using PHEVs. The effectiveness of the proposed method in increasing power injection during power outages is shown in simulation results.


Energies ◽  
2019 ◽  
Vol 12 (13) ◽  
pp. 2563 ◽  
Author(s):  
Wei Li ◽  
Zhiyun Lin ◽  
Kai Cai ◽  
Hanyun Zhou ◽  
Gangfeng Yan

With the increasing popularity of plug-in hybrid electric vehicles (PHEVs), the coordinated charging of PHEVs has become an important issue in power distribution systems. This paper employs a multi-objective optimization model for coordinated charging of PHEVs in the system, in which the problem of valley filling and total cost minimization are both investigated under the system’s technical constraints. To this end, a hierarchical optimal algorithm combining the water-filling-based algorithm with the consensus-based method is proposed to solve the constrained optimization problem. Moreover, a moving horizon approach is adopted to deal with the case where PHEVs arrive and leave randomly. We show that the proposed algorithm not only enhances the stability of the power load but also achieves the global minimization of vehicle owners charging costs, and its implementation is convenient in the multi-level power distribution system integrating the physical power grid with a heterogeneous information network. Numerical simulations are presented to show the desirable performance of the proposed algorithm.


Sign in / Sign up

Export Citation Format

Share Document