scholarly journals Multi-Objective Optimal Charging Control of Plug-In Hybrid Electric Vehicles in Power Distribution Systems

Energies ◽  
2019 ◽  
Vol 12 (13) ◽  
pp. 2563 ◽  
Author(s):  
Wei Li ◽  
Zhiyun Lin ◽  
Kai Cai ◽  
Hanyun Zhou ◽  
Gangfeng Yan

With the increasing popularity of plug-in hybrid electric vehicles (PHEVs), the coordinated charging of PHEVs has become an important issue in power distribution systems. This paper employs a multi-objective optimization model for coordinated charging of PHEVs in the system, in which the problem of valley filling and total cost minimization are both investigated under the system’s technical constraints. To this end, a hierarchical optimal algorithm combining the water-filling-based algorithm with the consensus-based method is proposed to solve the constrained optimization problem. Moreover, a moving horizon approach is adopted to deal with the case where PHEVs arrive and leave randomly. We show that the proposed algorithm not only enhances the stability of the power load but also achieves the global minimization of vehicle owners charging costs, and its implementation is convenient in the multi-level power distribution system integrating the physical power grid with a heterogeneous information network. Numerical simulations are presented to show the desirable performance of the proposed algorithm.

2021 ◽  
Vol 9 ◽  
Author(s):  
Wei Teng ◽  
Yuejiao Wang ◽  
Shumin Sun ◽  
Yan Cheng ◽  
Peng Yu ◽  
...  

DC power distribution systems will play an important role in the future urban power distribution system, while the charging and discharging requirements of electric vehicles have a great impact on the voltage stability of the DC power distribution systems. A robust control method based on H∞ loop shaping method is proposed to suppress the effect of uncertain integration on voltage stability of DC distribution system. The results of frequency domain analysis and time domain simulation show that the proposed robust controller can effectively suppress the DC bus voltage oscillation caused by the uncertain integration of electric vehicle, and the robustness is strong.


DYNA ◽  
2015 ◽  
Vol 82 (192) ◽  
pp. 141-149 ◽  
Author(s):  
Andres Felipe Panesso-Hernández ◽  
Juan Mora-Flórez ◽  
Sandra Pérez-Londoño

<p>The impedance-based approaches for fault location in power distribution systems determine a faulted line section. Next, these require of the estimation of the voltages and currents at one or both section line ends to exactly determine the fault location. It is a challenge because in most of the power distribution systems, measurements are only available at the main substation.  This document presents a modeling proposal of the power distribution system and an easy implementation method to estimate the voltages and currents at the faulted line section, using the measurements at the main substation, the line, load, transformer parameters and other serial and shunt connected devices and the power system topology. The approach here proposed is tested using a fault locator based on superimposed components, where the distance estimation error is lower than 1.5% in all of the cases. </p>


Energies ◽  
2020 ◽  
Vol 13 (2) ◽  
pp. 334
Author(s):  
Esteban Pulido ◽  
Luis Morán ◽  
Felipe Villarroel ◽  
José Silva

In this paper, a new concept of short-circuit current (SCC) reduction for power distribution systems is presented and analyzed. Conventional fault current limiters (FCLs) are connected in series with a circuit breaker (CB) that is required to limit the short-circuit current. Instead, the proposed scheme consisted of the parallel connection of a current-controlled power converter to the same bus intended to reduce the amplitude of the short-circuit current. This power converter was controlled to absorb a percentage of the short-circuit current from the bus to reduce the amplitude of the short-circuit current. The proposed active short-circuit current reduction scheme was implemented with a cascaded H-bridge power converter and tested by simulation in a 13.2 kV industrial power distribution system for three-phase faults, showing the effectiveness of the short-circuit current attenuation in reducing the maximum current requirement in all circuit breakers connected to the same bus. The paper also presents the design characteristics of the power converter and its associated control scheme.


2019 ◽  
Vol 217 ◽  
pp. 01020 ◽  
Author(s):  
Margarita Chulyukova ◽  
Nikolai Voropai

The paper considers the possibilities of increasing the flexibility of power distribution systems by real-time load management. The principles of the implementation of special automatic systems for this purpose are proposed. These systems enable some loads of specific consumers of the power distribution system switched to islanded operation to “shift” from the daily maximum to the minimum, which makes some generators available to connect certain essential consumers disconnected earlier by under-frequency load shedding system to the power system. The approach under consideration is illustrated by a power system with distributed generation.


Sign in / Sign up

Export Citation Format

Share Document