Load shedding through optimal power flow to support self-healing actions in distribution feeders

Author(s):  
Lucas R. Ferreira ◽  
Luciano C. Siebert ◽  
Alexandre R. Aoki ◽  
Thelma S. P. Fernandes
2013 ◽  
Vol 14 (6) ◽  
pp. 591-607 ◽  
Author(s):  
J. Preetha Roselyn ◽  
D. Devaraj ◽  
Subhransu Sekhar Dash

Abstract Voltage stability is an important issue in the planning and operation of deregulated power systems. The voltage stability problems is a most challenging one for the system operators in deregulated power systems because of the intense use of transmission line capabilities and poor regulation in market environment. This article addresses the congestion management problem avoiding offline transmission capacity limits related to voltage stability by considering Voltage Security Constrained Optimal Power Flow (VSCOPF) problem in deregulated environment. This article presents the application of Multi Objective Differential Evolution (MODE) algorithm to solve the VSCOPF problem in new competitive power systems. The maximum of L-index of the load buses is taken as the indicator of voltage stability and is incorporated in the Optimal Power Flow (OPF) problem. The proposed method in hybrid power market which also gives solutions to voltage stability problems by considering the generation rescheduling cost and load shedding cost which relieves the congestion problem in deregulated environment. The buses for load shedding are selected based on the minimum eigen value of Jacobian with respect to the load shed. In the proposed approach, real power settings of generators in base case and contingency cases, generator bus voltage magnitudes, real and reactive power demands of selected load buses using sensitivity analysis are taken as the control variables and are represented as the combination of floating point numbers and integers. DE/randSF/1/bin strategy scheme of differential evolution with self-tuned parameter which employs binomial crossover and difference vector based mutation is used for the VSCOPF problem. A fuzzy based mechanism is employed to get the best compromise solution from the pareto front to aid the decision maker. The proposed VSCOPF planning model is implemented on IEEE 30-bus system, IEEE 57 bus practical system and IEEE 118 bus system. The pareto optimal front obtained from MODE is compared with reference pareto front and the best compromise solution for all the cases are obtained from fuzzy decision making strategy. The performance measures of proposed MODE in two test systems are calculated using suitable performance metrices. The simulation results show that the proposed approach provides considerable improvement in the congestion management by generation rescheduling and load shedding while enhancing the voltage stability in deregulated power system.


INSIST ◽  
2018 ◽  
Vol 3 (1) ◽  
pp. 115
Author(s):  
Lukmanul Hakim ◽  
Annisa Zauhar Nafisah ◽  
Heri Gusmedi ◽  
Khairudin Khairudin

This paper proposes a load shedding scheme to improve voltage profile of a power system. A linear programming approach to optimal power flow is utilized to obtain optimum amount of load to shed in order to bring power system to an acceptable operating region. In this work, ±5% voltage variation is considered to be acceptable and hence, an immediate control action should be taken if power system is operated beyond this limit. The proposed method was tested on the IEEE 57-bus test system. Results showed that the proposed approach was able to provide a minimum amount of load shedding action to improve voltage profile of the studied power system.


2012 ◽  
Vol 3 (2) ◽  
pp. 167-169
Author(s):  
F.M.PATEL F.M.PATEL ◽  
◽  
N. B. PANCHAL N. B. PANCHAL

2020 ◽  
Vol 12 (12) ◽  
pp. 31-43
Author(s):  
Tatiana A. VASKOVSKAYA ◽  
◽  
Boris A. KLUS ◽  

The development of energy storage systems allows us to consider their usage for load profile leveling during operational planning on electricity markets. The paper proposes and analyses an application of an energy storage model to the electricity market in Russia with the focus on the day ahead market. We consider bidding, energy storage constraints for an optimal power flow problem, and locational marginal pricing. We show that the largest effect for the market and for the energy storage system would be gained by integration of the energy storage model into the market’s optimization models. The proposed theory has been tested on the optimal power flow model of the day ahead market in Russia of 10000-node Unified Energy System. It is shown that energy storage systems are in demand with a wide range of efficiencies and cycle costs.


2016 ◽  
Vol 3 (4) ◽  
pp. 1-11
Author(s):  
M. Lakshmikantha Reddy ◽  
◽  
M. Ramprasad Reddy ◽  
V.C. Veera Reddy ◽  
◽  
...  

Sign in / Sign up

Export Citation Format

Share Document