Analytical Model of Small Hydropower Plant Working at Variable Speed

2018 ◽  
Vol 33 (4) ◽  
pp. 1886-1894 ◽  
Author(s):  
Dariusz Borkowski
Author(s):  
Miloš V. Nikolić ◽  
Rade M. Karamarković

Abstract Unequal flow distribution between the chambers of a three-chamber settling basin causes its malfunction and endangers the turbines of a small hydropower plant. To equalize the flows, sluice gates are used. To find their positions, the following methodologies are considered: (1) measurements combined with trial-and-error method (TAE), (2) measurements with regression analysis (RA), (3) CFD model combined with TAE, (4) CFD model with RA, (5) CFD model supported by a one-dimensional flow model, and (6) CFD model with an analytical model. The additional models and RA are intended to speed up the solution finding. From the previous list, only the sixth methodology is applicable. The first four are not because of the weir design, and the fifth because of the three-dimensional flow character. Initially, the CFD model of the side-weir intake was developed and validated. Afterward, the analytical model, which consists of a system of three pressure drop equations for three parallel and partly imaginary streams, is formed. The local flow resistances in the analytical model are determined by the CFD model combined with RA. To equalize the flows, three solutions with (i) fix, (ii) fix in a range of flows, and (iii) variable positions of the sluice gates are analyzed.


Processes ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 266
Author(s):  
Md Rakibuzzaman ◽  
Sang-Ho Suh ◽  
Hyoung-Ho Kim ◽  
Youngtae Ryu ◽  
Kyung Yup Kim

Discharge water from fish farms is a clean, renewable, and abundant energy source that has been used to obtain renewable energy via small hydropower plants. Small hydropower plants may be installed at offshore fish farms where suitable water is obtained throughout the year. It is necessary to meet the challenges of developing small hydropower systems, including sustainability and turbine efficiency. The main objective of this study was to investigate the possibility of constructing a small hydropower plant and develop 100 kW class propeller-type turbines in a fish farm with a permanent magnet synchronous generator (PMSG). The turbine was optimized using a computer simulation, and an experiment was conducted to obtain performance data. Simulation results were then validated with experimental results. Results revealed that streamlining the designed shape of the guide vane reduced the flow separation and improved the efficiency of the turbine. Optimizing the shape of the runner vane decreased the flow rate, reducing the water power and increasing the efficiency by about 5.57%. Also, results revealed that tubular or cross-flow turbines could be suitable for use in fish farm power plants, and the generator used should be waterproofed to avoid exposure to seawater.


Water ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1041
Author(s):  
Francisco Javier Sanz-Ronda ◽  
Juan Francisco Fuentes-Pérez ◽  
Ana García-Vega ◽  
Francisco Javier Bravo-Córdoba

Fish need to move upstream and downstream through rivers to complete their life cycles. Despite the fact that fishways are the most commonly applied solution to recover longitudinal connectivity, they are not considered viable for downstream migration. Therefore, alternative facilities are recommended to facilitate downstream migration. However, a few recent studies have disagreed with this general assumption, showing the potential for bidirectional movements. This study advances our understanding of the potential of fishways for downstream migration by studying their efficiency in a run-of-the-river hydropower plant in the Duero River (Spain). To achieve this, downstream movements of the Iberian barbel (n = 299) were monitored in a stepped fishway for two years with passive integrated transponder (PIT)-tag technology, considering the effect of fish origin and release zone. The results showed that 24.9% of barbels descended through the fishway, with the origin and release zone affecting the fishway location. In addition, downstream movements were observed throughout the whole year, except in winter. The study concludes that, under specific scenarios, fishways could act as safe alternative routes for downstream migration.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Alberto Scotti ◽  
Roberta Bottarin

AbstractThe present dataset contains information about aquatic macroinvertebrates and environmental variables collected before and after the implementation of a small “run-of-river” hydropower plant on the Saldur stream, a glacier-fed stream located in the Italian Central-Eastern Alps. Between 2015 and 2019, with two sampling events per year, we collected and identified 34,836 organisms in 6 sampling sites located within a 6 km stretch of the stream. Given the current boom of the hydropower sector worldwide, and the growing contribution of small hydropower plants to energy production, data here included may represent an important – and long advocated – baseline to assess the effects that these kinds of powerplants have on the riverine ecosystem. Moreover, since the Saldur stream is part of the International Long Term Ecological Research network, this dataset also constitutes part of the data gathered within this research programme. All samples are preserved at Eurac Research facilities.


Sign in / Sign up

Export Citation Format

Share Document