High speed fuzzy logic microprocessor and its applications in a real-time hardware expert system

Author(s):  
L. Zhijian ◽  
J. Hong
2014 ◽  
Vol 687-691 ◽  
pp. 2967-2970
Author(s):  
Tao Guo ◽  
Zheng Qi Liu

For the problems of wear real-time, compatibility and intelligence, we have designed computer network test and failure diagnosis system based on VXI bus technology. The hardware and software of the system have been improved. To implement real time, high speed data communication and transmission, the functions of VXI test board have been extended. The degree of intelligence and automatization has been improved through introducing expert system in the design of software. These will provide new references for improvement of existing test and diagnosis systems of computer network equipments.


Author(s):  
Jeffrey R. Mountain

The real-time implementation of fuzzy logic algorithms in embedded systems typically uses two approaches: employ fuzzy specific processing hardware or adapt standard embedded controllers to implement the fuzzy logic inference process. While high speed applications may require using the more sophisticated hardware, most embedded control applications do not have such processing speed demands, nor can they justify the added expense associated with the fuzzy enhanced processing engines. A review of embedded controller fuzzy logic implementations indicates a preference for 16-bit architectures; devoting significant processing resources to perform fuzzification, rule application, and defuzzification during real-time operation. While these approaches remain faithful to the foundations of fuzzy logic control, devoting processor resources to fuzzy specific tasks can limit a controller’s ability to handle peripheral tasks, such as man-machine I/O interface. This paper describes a simplified, hybrid approach suitable for standard 8-bit microcontrollers. The generic nature of the approach allows the methodology to be readily applicable to many single input, single output systems. This paper describes the hybrid fuzzy logic approach, which is placed in context using a proof-of-concept motor speed application. System performance data and notable limitations of the prototyped system are also described.


Author(s):  
Parham Shahidi ◽  
Steve C. Southward ◽  
Mehdi Ahmadian

With the latest initiative of the government to develop a high speed passenger rail system in the United States the first and most important strategic transportation goal is to “Ensure safe and efficient transportation choices. A key element of safe railroad operation is to address the issue of fatigue among railroad operating employees and how to fight it. In this paper, we are presenting a novel approach to estimating fatigue levels of train conductors by analyzing the speech signal in the communication between the conductor and dispatch. We extract vocal indicators of fatigue from the speech signal and use Fuzzy Logic to generate an estimate of the mental state of the train conductor. Previous research has shown that sleeping disorders, reduced hours of rest and disrupted circadian rhythms lead to significantly increased fatigue levels which manifest themselves in alterations of speech patterns as compared to alert states of mind. To make a decision about the level of fatigue, we are proposing a Fuzzy Logic algorithm which combines inputs such as word production rate and speech intensity to generate a Fatigue Quotient at any moment in time when speech is present. The computation of the Fatigue Quotient relies on a rule base which draws from existing knowledge about fatigue indicators and their relation to the level of fatigue of the subject. For this project, the rule base and the membership functions associated with it were derived from real time testing and the subsequent tuning of parameters to refine the detection of changes in patterns. It was successfully shown that Fuzzy Logic can be implemented to estimate alertness levels from speech metrics in real-time and that the membership functions for this purpose can be found empirically through iterative testing. Furthermore, this study has proven that the framework to run such an analysis continuously as a monitoring function in locomotive cabins is feasible and can be realized with relatively inexpensive hardware.


2014 ◽  
Vol 59 (1) ◽  
pp. 41-52 ◽  
Author(s):  
Norbert Skoczylas

Abstract The Author endeavored to consult some of the Polish experts who deal with assessing and preventing outburst hazards as to their knowledge and experience. On the basis of this knowledge, an expert system, based on fuzzy logic, was created. The system allows automatic assessment of outburst hazard. The work was completed in two stages. The first stage involved researching relevant sources and rules concerning outburst hazard, and, subsequently, determining a number of parameters measured or observed in the mining industry that are potentially connected with the outburst phenomenon and can be useful when estimating outburst hazard. Then, the Author contacted selected experts who are actively involved in preventing outburst hazard, both in the industry and science field. The experts were anonymously surveyed, which made it possible to select the parameters which are the most essential in assessing outburst hazard. The second stage involved gaining knowledge from the experts by means of a questionnaire-interview. Subjective opinions on estimating outburst hazard on the basis of the parameters selected during the first stage were then systematized using the structures typical of the expert system based on fuzzy logic.


Sign in / Sign up

Export Citation Format

Share Document