Dynamic analysis of robotic manipulators with closed kinematic chains

Author(s):  
I. Bindzi ◽  
M.J. Richard ◽  
C.M. Gosselin ◽  
L. Cheng
1981 ◽  
Vol 103 (3) ◽  
pp. 643-651 ◽  
Author(s):  
W. Sunada ◽  
S. Dubowsky

An analytical method is presented for the dynamics of spatial mechanisms containing complex-shaped, flexible links with application to both high-speed industrial machines and robotic manipulators. Existing NASTRAN-type finite element structural analysis programs are combined with 4 × 4 matrix dynamic analysis techniques and Component Mode Synthesis coordinate reduction to yield a procedure capable of analyzing complex, non-linear spatial mechanisms with irregularly shaped links in great detail, yet producing a system of equations small enough for efficient numerical integration. The method is applied to two examples.


Author(s):  
Ting-Li Yang ◽  
Fang-Hua Yao ◽  
Ming Zhang

Abstract This paper presents a systematical comparative study of various modular methods based on the different module types: basic kinematic chains (BKCs), single opened chains (SOCs), loops (or a tree and co-tree), links-joints, etc. for analysis and synthesis of structure, kinematics and dynamics of planar linkages. The basic idea is that any linkage can be divided into (or built up by) some modular components in sequence, and based on the component constraints and network entirty constraints of the linkage, the unified modular approaches have been used for analysis and synthesis. In systematical comparative study, the main issues of a modular method have been discussed, such as: the topological characteristics revealed via different module types; the dimension of a set of kinematic equations; the automated generation and solution of kinematic equations; the dimension and automated generation of dynamical equations, and computation complexity for generating and solving dynamical equation; the automated generation of structural analysis and type synthesis; the generation of kinematic synthesis equations etc.. This paper gives a summary of the use of modular techniques for analyzing and synthesizing planar linkages in the recently thirty years. This comparative study includes two parts: Part I-modular structural analysis and modular kinematic analysis; Part II-modular dynamic analysis, modular structural synthesis and modular kinematic synthesis. This paper is the second part.


Author(s):  
Jing Xiong ◽  
Ting-Li Yang ◽  
Xiangdong Yang ◽  
Dongchao Yang ◽  
Ken Chen

The kinematic and dynamic analysis of an spatial multi-loop mechanism especially parallel mechanism is significant but always complex. Based on the topological structure of mechanisms, this paper proposes the concept of coupling degree of mechanism systematically, and applies it to the criterion of basic kinematic chains(BKCs) and other problems. The relation between topology, kinematics and dynamics of parallel mechanisms is established, and then it is achieved to quantitatively describe the analysis complexity of a parallel mechanism and to obtain its simplest solving path, according to its topological structure. The preliminary method for unified modeling of the topology, kinematics and dynamics of parallel mechanisms is proposed, using BKC as the basic analysis unit. Some suggestions for optimization and selective preference of parallel mechanisms are also presented.


Author(s):  
Carlo Galletti ◽  
Pietro Fanghella ◽  
Elena Giannotti

The paper describes a systematic approach to define geometrical and dimensional overconstraint conditions for single-loop kinematic chains of both “banal” and “exceptional” types. The approach is an application of the theory of displacement groups. It presents several interesting features: it can be easily integrated with mobility analysis; it makes use of geometric data local to links and does not require a preliminary mechanism assembly nor a given initial congruent position; it is systematic and can be suitably implemented in a computer code; it suggests where geometrical and dimensional tolerances have to be located; it can be embedded in other group-based approaches, like kinematic synthesis or dynamic analysis. After a brief summary of the properties of displacement groups and their operations, the paper shows how they can be used to formulate systematically the overconstraint conditions in kinematic chains. A computer implementation of the approach is also outlined, and several examples with different complexities are given.


Sign in / Sign up

Export Citation Format

Share Document