Rule-Based Cooperative Continuous Ant Colony Optimization to Improve the Accuracy of Fuzzy System Design

2014 ◽  
Vol 22 (4) ◽  
pp. 723-735 ◽  
Author(s):  
Chia-Feng Juang ◽  
Chi-Wei Hung ◽  
Chia-Hung Hsu
2016 ◽  
Vol 33 (7) ◽  
pp. 1882-1898 ◽  
Author(s):  
Chi-Chung Chen ◽  
Li Ping Shen ◽  
Chien-Feng Huang ◽  
Bao-Rong Chang

Purpose The purpose of this paper is to propose a new population-based metaheuristic optimization algorithm, assimilation-accommodation mixed continuous ant colony optimization (ACACO), to improve the accuracy of Takagi-Sugeno-Kang-type fuzzy systems design. Design/methodology/approach The original N solution vectors in ACACO are sorted and categorized into three groups according to their ranks. The Research Learning scheme provides the local search capability for the best-ranked group. The Basic Learning scheme uses the ant colony optimization (ACO) technique for the worst-ranked group to approach the best solution. The operations of assimilation, accommodation, and mutation in Mutual Learning scheme are used for the middle-ranked group to exchange and accommodate the partial information between groups and, globally, search information. Only the N top-best-performance solutions are reserved after each iteration of learning. Findings The proposed algorithm outperforms some reported ACO algorithms for the fuzzy system design with the same number of rules. The performance comparison with various previously published neural fuzzy systems also shows its superiority even with a smaller number of fuzzy rules to those neural fuzzy systems. Research limitations/implications Future work will consider the application of the proposed ACACO to the recurrent fuzzy network. Originality/value The originality of this work is to mix the work of the well-known psychologist Jean Piaget and the continuous ACO to propose a new population-based optimization algorithm whose superiority is demonstrated.


Author(s):  
MANJU AGARWAL ◽  
VIKAS K. SHARMA

This paper addresses the redundancy allocation problem of multi-state series-parallel reliability structures where each subsystem can consist of maximum two types of redundant components. The objective is to minimize the total investment cost of system design satisfying system reliability constraint and the consumer load demand. The demand distribution is presented as a piecewise cumulative load curve. The configuration uses the binary components from a list of available products to provide redundancy so as to increase system reliability. The components are characterized by their feeding capacity, reliability and cost. A system that consists of elements with different reliability and productivity parameters has the capacity strongly dependent upon the selection of components constituting its structure. An ant colony optimization algorithm has been presented to analyze the problem and suggest an optimal system structure. The solution approach consists of a series of simple steps as used in early ant colony optimization algorithms dealing with other optimization problems and still proves efficient over the prevalent methods with regard to solutions obtained/computation time. Three multi-state system design problems have been solved for illustration.


Author(s):  
Rafid Sagban ◽  
Haydar A. Marhoon ◽  
Raaid Alubady

Rule-based classification in the field of health care using artificial intelligence provides solutions in decision-making problems involving different domains. An important challenge is providing access to good and fast health facilities. Cervical cancer is one of the most frequent causes of death in females. The diagnostic methods for cervical cancer used in health centers are costly and time-consuming. In this paper, bat algorithm for feature selection and ant colony optimization-based classification algorithm were applied on cervical cancer data set obtained from the repository of the University of California, Irvine to analyze the disease based on optimal features. The proposed algorithm outperforms other methods in terms of comprehensibility and obtains better results in terms of classification accuracy.


Sign in / Sign up

Export Citation Format

Share Document