scholarly journals Differential Radiometers Using Fabry–Perot Interferometric Technique for Remote Sensing of Greenhouse Gases

2008 ◽  
Vol 46 (10) ◽  
pp. 3115-3122 ◽  
Author(s):  
E.M. Georgieva ◽  
W.S. Heaps ◽  
E.L. Wilson
2018 ◽  
Vol 45 (11) ◽  
pp. 5779-5787 ◽  
Author(s):  
Kang Sun ◽  
Iouli E. Gordon ◽  
Christopher E. Sioris ◽  
Xiong Liu ◽  
Kelly Chance ◽  
...  

Optica ◽  
2014 ◽  
Vol 1 (5) ◽  
pp. 290 ◽  
Author(s):  
G. B. Rieker ◽  
F. R. Giorgetta ◽  
W. C. Swann ◽  
J. Kofler ◽  
A. M. Zolot ◽  
...  

2021 ◽  
Vol 14 (10) ◽  
pp. 6483-6507
Author(s):  
Zhao-Cheng Zeng ◽  
Vijay Natraj ◽  
Feng Xu ◽  
Sihe Chen ◽  
Fang-Ying Gong ◽  
...  

Abstract. Remote sensing of greenhouse gases (GHGs) in cities, where high GHG emissions are typically associated with heavy aerosol loading, is challenging due to retrieval uncertainties caused by the imperfect characterization of scattering by aerosols. We investigate this problem by developing GFIT3, a full physics algorithm to retrieve GHGs (CO2 and CH4) by accounting for aerosol scattering effects in polluted urban atmospheres. In particular, the algorithm includes coarse- (including sea salt and dust) and fine- (including organic carbon, black carbon, and sulfate) mode aerosols in the radiative transfer model. The performance of GFIT3 is assessed using high-spectral-resolution observations over the Los Angeles (LA) megacity made by the California Laboratory for Atmospheric Remote Sensing Fourier transform spectrometer (CLARS-FTS). CLARS-FTS is located on Mt. Wilson, California, at 1.67 km a.s.l. overlooking the LA Basin, and it makes observations of reflected sunlight in the near-infrared spectral range. The first set of evaluations are performed by conducting retrieval experiments using synthetic spectra. We find that errors in the retrievals of column-averaged dry air mole fractions of CO2 (XCO2) and CH4 (XCH4) due to uncertainties in the aerosol optical properties and atmospheric a priori profiles are less than 1 % on average. This indicates that atmospheric scattering does not induce a large bias in the retrievals when the aerosols are properly characterized. The methodology is then further evaluated by comparing GHG retrievals using GFIT3 with those obtained from the CLARS-GFIT algorithm (used for currently operational CLARS retrievals) that does not account for aerosol scattering. We find a significant correlation between retrieval bias and aerosol optical depth (AOD). A comparison of GFIT3 AOD retrievals with collocated ground-based observations from AErosol RObotic NETwork (AERONET) shows that the developed algorithm produces very accurate results, with biases in AOD estimates of about 0.02. Finally, we assess the uncertainty in the widely used tracer–tracer ratio method to obtain CH4 emissions based on CO2 emissions and find that using the CH4/CO2 ratio effectively cancels out biases due to aerosol scattering. Overall, this study of applying GFIT3 to CLARS-FTS observations improves our understanding of the impact of aerosol scattering on the remote sensing of GHGs in polluted urban atmospheric environments. GHG retrievals from CLARS-FTS are potentially complementary to existing ground-based and spaceborne observations to monitor anthropogenic GHG fluxes in megacities.


Author(s):  
R. Näsi ◽  
E. Honkavaara ◽  
S. Tuominen ◽  
H. Saari ◽  
I. Pölönen ◽  
...  

Unmanned airborne systems (UAS) based remote sensing offers flexible tool for environmental monitoring. Novel lightweight Fabry-Perot interferometer (FPI) based, frame format, hyperspectral imaging in the spectral range from 400 to 1600 nm was used for identifying different species of trees in a forest area. To the best of the authors’ knowledge, this was the first research where stereoscopic, hyperspectral VIS, NIR, SWIR data is collected for tree species identification using UAS. The first results of the analysis based on fusion of two FPI-based hyperspectral imagers and RGB camera showed that the novel FPI hyperspectral technology provided accurate geometric, radiometric and spectral information in a forested scene and is operational for environmental remote sensing applications.


Author(s):  
A. M. G. Tommaselli ◽  
A. Berveglieri ◽  
R. A. Oliveira ◽  
L. Y. Nagai ◽  
E. Honkavaara

Flexible tools for photogrammetry and remote sensing using unmanned airborne vehicles (UAVs) have been attractive topics of research and development. The lightweight hyperspectral camera based on a Fabry-Pérot interferometer (FPI) is one of the highly interesting tools for UAV based remote sensing for environmental and agricultural applications. The camera used in this study acquires images from different wavelengths by changing the FPI gap and using two CMOS sensors. Due to the acquisition principle of this camera, the interior orientation parameters (IOP) of the spectral bands can vary for each band and sensor and changing the configuration also would change these sets of parameters posing an operational problem when several bands configurations are being used. The objective of this study is to assess the impact of use IOPs estimated for some bands in one configuration for other bands of different configuration the FPI camera, considering different IOP and EOP constraints. The experiments were performed with two FPI-hyperspectral camera data sets: the first were collected 3D terrestrial close-range calibration field and the second onboard of an UAV in a parking area in the interior of São Paulo State.


Author(s):  
A. M. G. Tommaselli ◽  
A. Berveglieri ◽  
R. A. Oliveira ◽  
L. Y. Nagai ◽  
E. Honkavaara

Flexible tools for photogrammetry and remote sensing using unmanned airborne vehicles (UAVs) have been attractive topics of research and development. The lightweight hyperspectral camera based on a Fabry-Pérot interferometer (FPI) is one of the highly interesting tools for UAV based remote sensing for environmental and agricultural applications. The camera used in this study acquires images from different wavelengths by changing the FPI gap and using two CMOS sensors. Due to the acquisition principle of this camera, the interior orientation parameters (IOP) of the spectral bands can vary for each band and sensor and changing the configuration also would change these sets of parameters posing an operational problem when several bands configurations are being used. The objective of this study is to assess the impact of use IOPs estimated for some bands in one configuration for other bands of different configuration the FPI camera, considering different IOP and EOP constraints. The experiments were performed with two FPI-hyperspectral camera data sets: the first were collected 3D terrestrial close-range calibration field and the second onboard of an UAV in a parking area in the interior of São Paulo State.


2014 ◽  
Vol 7 (3) ◽  
pp. 713-729 ◽  
Author(s):  
D. Fu ◽  
T. J. Pongetti ◽  
J.-F. L. Blavier ◽  
T. J. Crawford ◽  
K. S. Manatt ◽  
...  

Abstract. The Los Angeles basin is a significant anthropogenic source of major greenhouse gases (CO2 and CH4) and the pollutant CO, contributing significantly to regional and global climate change. We present a novel approach for monitoring the spatial and temporal distributions of greenhouse gases in the Los Angeles basin using a high-resolution spectroscopic remote sensing technique. A new Fourier transform spectrometer called CLARS-FTS has been deployed since May, 2010, at Jet Propulsion Laboratory (JPL)'s California Laboratory for Atmospheric Remote Sensing (CLARS) on Mt. Wilson, California, for automated long-term measurements of greenhouse gases. The instrument design and performance of CLARS-FTS are presented. From its mountaintop location at an altitude of 1673 m, the instrument points at a programmed sequence of ground target locations in the Los Angeles basin, recording spectra of reflected near-IR solar radiation. Column-averaged dry-air mole fractions of greenhouse gases (XGHG) including XCO2, XCH4, and XCO are retrieved several times per day for each target. Spectra from a local Spectralon® scattering plate are also recorded to determine background (free tropospheric) column abundances above the site. Comparisons between measurements from LA basin targets and the Spectralon® plate provide estimates of the boundary layer partial column abundances of the measured species. Algorithms are described for transforming the measured interferograms into spectra, and for deriving column abundances from the spectra along with estimates of the measurement precision and accuracy. The CLARS GHG measurements provide a means to infer relative, and possibly absolute, GHG emissions.


Sign in / Sign up

Export Citation Format

Share Document