scholarly journals UAS BASED TREE SPECIES IDENTIFICATION USING THE NOVEL FPI BASED HYPERSPECTRAL CAMERAS IN VISIBLE, NIR AND SWIR SPECTRAL RANGES

Author(s):  
R. Näsi ◽  
E. Honkavaara ◽  
S. Tuominen ◽  
H. Saari ◽  
I. Pölönen ◽  
...  

Unmanned airborne systems (UAS) based remote sensing offers flexible tool for environmental monitoring. Novel lightweight Fabry-Perot interferometer (FPI) based, frame format, hyperspectral imaging in the spectral range from 400 to 1600 nm was used for identifying different species of trees in a forest area. To the best of the authors’ knowledge, this was the first research where stereoscopic, hyperspectral VIS, NIR, SWIR data is collected for tree species identification using UAS. The first results of the analysis based on fusion of two FPI-based hyperspectral imagers and RGB camera showed that the novel FPI hyperspectral technology provided accurate geometric, radiometric and spectral information in a forested scene and is operational for environmental remote sensing applications.

Author(s):  
R. Näsi ◽  
E. Honkavaara ◽  
S. Tuominen ◽  
H. Saari ◽  
I. Pölönen ◽  
...  

Unmanned airborne systems (UAS) based remote sensing offers flexible tool for environmental monitoring. Novel lightweight Fabry-Perot interferometer (FPI) based, frame format, hyperspectral imaging in the spectral range from 400 to 1600 nm was used for identifying different species of trees in a forest area. To the best of the authors’ knowledge, this was the first research where stereoscopic, hyperspectral VIS, NIR, SWIR data is collected for tree species identification using UAS. The first results of the analysis based on fusion of two FPI-based hyperspectral imagers and RGB camera showed that the novel FPI hyperspectral technology provided accurate geometric, radiometric and spectral information in a forested scene and is operational for environmental remote sensing applications.


1995 ◽  
Vol 149 ◽  
pp. 338-339
Author(s):  
K. Døhlen ◽  
A. Cañas

We present the first results from a portable spectrometer for the visible and very near infrared based upon the principle of heterodyned holographic Fourier transform spectroscopy (HHS) (Dohi and Suzuki 1971, Dohlen 1994). The instrument uses a Michelson interferometer where one of the mirrors is replaced with a grating. This produces a spatially located, frequency-shifted interferogram which is read out by an all-reflective relay lens and a photo-diode array and processed on a portable PC. A battery pack ensures an autonomy of about 7 hours. Instrumental assets include high optical throughput, variable resolving power, and no moving parts.We have successfully used the instrument in two different remote sensing applications: detection of vegetation reflectance and atmospheric absorption.


Forests ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 739
Author(s):  
Enoch Gyamfi-Ampadu ◽  
Michael Gebreslasie

Forest covers about a third of terrestrial land surface, with tropical and subtropical zones being a major part. Remote sensing applications constitute a significant approach to monitoring forests. Thus, this paper reviews the progress made by remote sensing data applications to tropical and sub-tropical natural forest monitoring over the last two decades (2000–2020). The review focuses on the thematic areas of aboveground biomass and carbon estimations, tree species identification, tree species diversity, and forest cover and change mapping. A systematic search of articles was performed on Web of Science, Science Direct, and Google Scholar by applying a Boolean operator and using keywords related to the thematic areas. We identified 50 peer-reviewed articles that studied tropical and subtropical natural forests using remote sensing data. Asian and South American natural forests are the most highly researched natural forests, while African natural forests are the least studied. Medium spatial resolution imagery was extensively utilized for forest cover and change mapping as well as aboveground biomass and carbon estimation. In the latest studies, high spatial resolution imagery and machine learning algorithms, such as Random Forest and Support Vector Machine, were jointly utilized for tree species identification. In this review, we noted the promising potential of the emerging high spatial resolution satellite imagery for the monitoring of natural forests. We recommend more research to identify approaches to overcome the challenges of remote sensing applications to these thematic areas so that further and sustainable progress can be made to effectively monitor and manage sustainable forest benefits.


Sign in / Sign up

Export Citation Format

Share Document