When Deep Learning Meets Metric Learning: Remote Sensing Image Scene Classification via Learning Discriminative CNNs

2018 ◽  
Vol 56 (5) ◽  
pp. 2811-2821 ◽  
Author(s):  
Gong Cheng ◽  
Ceyuan Yang ◽  
Xiwen Yao ◽  
Lei Guo ◽  
Junwei Han
2021 ◽  
Vol 87 (8) ◽  
pp. 577-591
Author(s):  
Fengpeng Li ◽  
Jiabao Li ◽  
Wei Han ◽  
Ruyi Feng ◽  
Lizhe Wang

Inspired by the outstanding achievement of deep learning, supervised deep learning representation methods for high-spatial-resolution remote sensing image scene classification obtained state-of-the-art performance. However, supervised deep learning representation methods need a considerable amount of labeled data to capture class-specific features, limiting the application of deep learning-based methods while there are a few labeled training samples. An unsupervised deep learning representation, high-resolution remote sensing image scene classification method is proposed in this work to address this issue. The proposed method, called contrastive learning, narrows the distance between positive views: color channels belonging to the same images widens the gaps between negative view pairs consisting of color channels from different images to obtain class-specific data representations of the input data without any supervised information. The classifier uses extracted features by the convolutional neural network (CNN)-based feature extractor with labeled information of training data to set space of each category and then, using linear regression, makes predictions in the testing procedure. Comparing with existing unsupervised deep learning representation high-resolution remote sensing image scene classification methods, contrastive learning CNN achieves state-of-the-art performance on three different scale benchmark data sets: small scale RSSCN7 data set, midscale aerial image data set, and large-scale NWPU-RESISC45 data set.


2019 ◽  
Vol 9 (10) ◽  
pp. 2110 ◽  
Author(s):  
Yating Gu ◽  
Yantian Wang ◽  
Yansheng Li

As a fundamental and important task in remote sensing, remote sensing image scene understanding (RSISU) has attracted tremendous research interest in recent years. RSISU includes the following sub-tasks: remote sensing image scene classification, remote sensing image scene retrieval, and scene-driven remote sensing image object detection. Although these sub-tasks have different goals, they share some communal hints. Hence, this paper tries to discuss them as a whole. Similar to other domains (e.g., speech recognition and natural image recognition), deep learning has also become the state-of-the-art technique in RSISU. To facilitate the sustainable progress of RSISU, this paper presents a comprehensive review of deep-learning-based RSISU methods, and points out some future research directions and potential applications of RSISU.


Author(s):  
Z. L. Cai ◽  
Q. Weng ◽  
S. Z. Ye

Abstract. With the deepening research and cross-fusion in the modern remote sensing image area, the classification of high spatial resolution remote sensing images has captured the attention of the researchers in the field of remote sensing. However, due to the serious phenomenon of “same object, different spectrum” and “same spectrum, different object” of high-resolution remote sensing image, the traditional classification strategy is hard to handle this challenge. In this paper, a remote sensing image scene classification model based on SENet and Inception-V3 is proposed by utilizing the deep learning method and transfer learning strategy. The model first adds a dropout layer before the full connection layer of the original Inception-V3 model to avoid over-fitting. Then we embed the SENet module into the Inception-V3 model for optimizing the network performance. In this paper, global average pooling is used as squeeze operation, and then two fully connected layers are used to construct a bottleneck structure. The model proposed in this paper is more non-linear, can better fit the complex correlation between channels, and greatly reduces the amount of parameters and computation. In the training process, this paper adopts the transfer learning strategy, makes full use of existing models and knowledge, improves training efficiency, and finally obtains scene classification results. The experimental results based on AID high-score remote sensing scene images show that SE-Inception has faster convergence speed and more stable training effect than the original Inception-V3 training. Compared with other traditional methods and deep learning networks, the improved model proposed in this paper has greater accuracy improvement.


Sign in / Sign up

Export Citation Format

Share Document