deep learning features
Recently Published Documents


TOTAL DOCUMENTS

114
(FIVE YEARS 71)

H-INDEX

10
(FIVE YEARS 5)

2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Chengdi Wang ◽  
Xiuyuan Xu ◽  
Jun Shao ◽  
Kai Zhou ◽  
Kefu Zhao ◽  
...  

Objective. The detection of epidermal growth factor receptor (EGFR) mutation and programmed death ligand-1 (PD-L1) expression status is crucial to determine the treatment strategies for patients with non-small-cell lung cancer (NSCLC). Recently, the rapid development of radiomics including but not limited to deep learning techniques has indicated the potential role of medical images in the diagnosis and treatment of diseases. Methods. Eligible patients diagnosed/treated at the West China Hospital of Sichuan University from January 2013 to April 2019 were identified retrospectively. The preoperative CT images were obtained, as well as the gene status regarding EGFR mutation and PD-L1 expression. Tumor region of interest (ROI) was delineated manually by experienced respiratory specialists. We used 3D convolutional neural network (CNN) with ROI information as input to construct a classification model and established a prognostic model combining deep learning features and clinical features to stratify survival risk of lung cancer patients. Results. The whole cohort (N = 1262) was divided into a training set (N = 882, 70%), validation set (N = 125, 10%), and test set (N = 255, 20%). We used a 3D convolutional neural network (CNN) to construct a prediction model, with AUCs of 0.96 (95% CI: 0.94–0.98), 0.80 (95% CI: 0.72–0.88), and 0.73 (95% CI: 0.63–0.83) in the training, validation, and test cohorts, respectively. The combined prognostic model showed a good performance on survival prediction in NSCLC patients (C-index: 0.71). Conclusion. In this study, a noninvasive and effective model was proposed to predict EGFR mutation and PD-L1 expression status as a clinical decision support tool. Additionally, the combination of deep learning features with clinical features demonstrated great stratification capabilities in the prognostic model. Our team would continue to explore the application of imaging markers for treatment selection of lung cancer patients.


Author(s):  
Zhiwu Shang ◽  
Baoren Zhang ◽  
Wanxiang Li ◽  
Shiqi Qian ◽  
Jie Zhang

AbstractConvolution neural network (CNN) has been widely used in the field of remaining useful life (RUL) prediction. However, the CNN-based RUL prediction methods have some limitations. The receptive field of CNN is limited and easy to happen gradient vanishing problem when the network is too deep. The contribution differences of different channels and different time steps to RUL prediction are not considered, and only use deep learning features or handcrafted statistical features for prediction. These limitations can lead to inaccurate prediction results. To solve these problems, this paper proposes an RUL prediction method based on multi-layer self-attention (MLSA) and temporal convolution network (TCN). The TCN is used to extract deep learning features. Dilated convolution and residual connection are adopted in TCN structure. Dilated convolution is an efficient way to widen receptive field, and the residual structure can avoid the gradient vanishing problem. Besides, we propose a feature fusion method to fuse deep learning features and statistical features. And the MLSA is designed to adaptively assign feature weights. Finally, the turbofan engine dataset is used to verify the proposed method. Experimental results indicate the effectiveness of the proposed method.


2021 ◽  
Vol 4 (4) ◽  
pp. 82
Author(s):  
Aliyu Abubakar ◽  
Mohammed Ajuji ◽  
Ibrahim Usman Yahya

Malaria is one of the most infectious diseases in the world, particularly in developing continents such as Africa and Asia. Due to the high number of cases and lack of sufficient diagnostic facilities and experienced medical personnel, there is a need for advanced diagnostic procedures to complement existing methods. For this reason, this study proposes the use of machine-learning models to detect the malaria parasite in blood-smear images. Six different features—VGG16, VGG19, ResNet50, ResNet101, DenseNet121, and DenseNet201 models—were extracted. Then Decision Tree, Support Vector Machine, Naïve Bayes, and K-Nearest Neighbour classifiers were trained using these six features. Extensive performance analysis is presented in terms of precision, recall, f-1score, accuracy, and computational time. The results showed that automating the process can effectively detect the malaria parasite in blood samples with an accuracy of over 94% with less complexity than the previous approaches found in the literature.


Diagnostics ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1875
Author(s):  
Yuchi Tian ◽  
Temitope Emmanuel Komolafe ◽  
Jian Zheng ◽  
Guofeng Zhou ◽  
Tao Chen ◽  
...  

To assess if quantitative integrated deep learning and radiomics features can predict the PD-L1 expression level in preoperative MRI of hepatocellular carcinoma (HCC) patients. The data in this study consist of 103 hepatocellular carcinoma patients who received immunotherapy in a single center. These patients were divided into a high PD-L1 expression group (30 patients) and a low PD-L1 expression group (73 patients). Both radiomics and deep learning features were extracted from their MRI sequence of T2-WI, which were merged into an integrative feature space for machine learning for the prediction of PD-L1 expression. The five-fold cross-validation was adopted to validate the performance of the model, while the AUC was used to assess the predictive ability of the model. Based on the five-fold cross-validation, the integrated model achieved the best prediction performance, with an AUC score of 0.897 ± 0.084, followed by the deep learning-based model with an AUC of 0.852 ± 0.043 then the radiomics-based model with AUC of 0.794 ± 0.035. The feature set integrating radiomics and deep learning features is more effective in predicting PD-L1 expression level than only one feature type. The integrated model can achieve fast and accurate prediction of PD-L1 expression status in preoperative MRI of HCC patients.


Sign in / Sign up

Export Citation Format

Share Document