Closed-Form Anisotropic Polarimetric Two-Scale Model for Fast Evaluation of Sea Surface Backscattering

2019 ◽  
Vol 57 (8) ◽  
pp. 6182-6194 ◽  
Author(s):  
Gerardo Di Martino ◽  
Antonio Iodice ◽  
Daniele Riccio
Ultrasonics ◽  
2006 ◽  
Vol 44 ◽  
pp. e1461-e1465
Author(s):  
T.H. Neighbors ◽  
L. Bjørnø

2008 ◽  
Vol 136 (4) ◽  
pp. 1349-1372 ◽  
Author(s):  
Katherine M. LaCasse ◽  
Michael E. Splitt ◽  
Steven M. Lazarus ◽  
William M. Lapenta

Abstract High- and low-resolution sea surface temperature (SST) analysis products are used to initialize the Weather Research and Forecasting (WRF) Model for May 2004 for short-term forecasts over Florida and surrounding waters. Initial and boundary conditions for the simulations were provided by a combination of observations, large-scale model output, and analysis products. The impact of using a 1-km Moderate Resolution Imaging Spectroradiometer (MODIS) SST composite on subsequent evolution of the marine atmospheric boundary layer (MABL) is assessed through simulation comparisons and limited validation. Model results are presented for individual simulations, as well as for aggregates of easterly- and westerly-dominated low-level flows. The simulation comparisons show that the use of MODIS SST composites results in enhanced convergence zones, earlier and more intense horizontal convective rolls, and an increase in precipitation as well as a change in precipitation location. Validation of 10-m winds with buoys shows a slight improvement in wind speed. The most significant results of this study are that 1) vertical wind stress divergence and pressure gradient accelerations across the Florida Current region vary in importance as a function of flow direction and stability and 2) the warmer Florida Current in the MODIS product transports heat vertically and downwind of this heat source, modifying the thermal structure and the MABL wind field primarily through pressure gradient adjustments.


2018 ◽  
Vol 10 (12) ◽  
pp. 1931 ◽  
Author(s):  
Honglei Zheng ◽  
Yanmin Zhang ◽  
Ali Khenchaf ◽  
Yunhua Wang ◽  
Helmi Ghanmi ◽  
...  

This paper is devoted to investigating the electromagnetic (EM) backscattering from slick-free and slick-covered sea surfaces at various bands (L-band, C-band, X-band, and Ku-band) by using the second-order small slope approximation (SSA-2) and the measured synthetic aperture radar (SAR) data. It is known that the impact of slick on sea surface is mainly caused by two factors: the Marangoni damping effect and the reduction of friction velocity. In this work, the influences induced by these two factors on the sea curvature spectrum, the root mean square (RMS) height, the RMS slope, and the autocorrelation function of sea surfaces are studied in detail. Then, the slick-free and slick-covered sea surface profiles are simulated using the Elfouhaily spectrum and the Monte-Carlo model. The SSA-2 with the tapered incident wave is employed to simulate the normalized radar cross-sections (NRCSs) of sea surfaces. Furthermore, for slick-free sea surfaces, the NRCSs simulated with the SSA-2 at various bands are compared with those obtained by the first-order small slope approximation (SSA-1), the classic two-scale model (TSM), and the geophysical model functions (GMFs) at various bands, respectively. For slick-covered sea surfaces, the SSA-2-simulated NRCSs are compared with those obtained from C-band Radarsat-2 images and L-band uninhabited aerial vehicle synthetic aperture radar (UAVSAR) images, respectively. The numerical simulations illustrate that the SSA-2 can be used to study the EM backscattering from slick-free and slick-covered sea surfaces, and it has more advantages than the SSA-1 and the TSM. The works presented in this paper are helpful for understanding the EM scattering from the sea surface covered with slick, in theory.


Author(s):  
Gerardo Di Martino ◽  
Alessio Di Simone ◽  
Antonio Iodice ◽  
Daniele Riccio

Sign in / Sign up

Export Citation Format

Share Document