Atmospheric Brightness Temperature Fluctuations in the Resonance Absorption Band of Water Vapor 18-27.2 GHz

Author(s):  
Dobroslav P. Egorov ◽  
Boris G. Kutuza
2013 ◽  
Vol 13 (4) ◽  
pp. 10009-10047
Author(s):  
H. H. Aumann ◽  
A. Ruzmaikin

Abstract. Deep Convective Clouds (DCC) have been widely studied because of their association with heavy precipitation and severe weather events. To identify DCC with Atmospheric Infrared Sounder (AIRS) data we use three types of thresholds: (1) thresholds based on the absolute value of an atmospheric window channel brightness temperature; (2) thresholds based on the difference between the brightness temperature in an atmospheric window channel and the brightness temperature centered on a strong water vapor absorption line; and (3) a threshold using the difference between the window channel brightness temperature and the tropopause temperature based on climatology. We find that DCC identified with threshold (2) (referred to as DCCw4) cover 0.16% of the area of the tropical zone and 72% of them are identified as deep convective, 39% are overshooting based on simultaneous observations with the Advanced Microwave Sounding Unit-HSB (AMSU-HSB) 183 GHz water vapor channels. In the past ten years the frequency of occurrence of DCC decreased for the tropical ocean, while it increased for tropical land. The land increase-ocean decrease closely balance, such that the DCC frequency changed at an insignificant rate for the entire tropical zone. This pattern of essentially zero trend for the tropical zone, but opposite land/ocean trends, is consistent with measurements of global precipitation. The changes in frequency of occurrence of the DCC are correlated with the Niño34 index, which defines the SST anomaly in the East-Central Pacific. This is also consistent with patterns seen in global precipitation. This suggests that the observed changes in the frequency are part of a decadal variability characterized by shifts in the main tropical circulation patterns, which does not fully balance in the ten year AIRS data record. The regional correlations and anti-correlations of the DCC frequency anomaly with the Multivariate ENSO Index (MEI) provides a new perspective for the regional analysis of past events, since the SST anomaly in the Nino34 region is available in the form of the extended MEI since 1871. Depending on the selected threshold, the frequency of DCC in the tropical zone ranges from 0.06% to 0.8% of the area. We find that the least frequent, more extreme DCC also show the largest trend in frequency, increasing over land, decreasing over ocean. This finding fits into the framework of how weather extremes respond to climate change.


2019 ◽  
Vol 46 (17-18) ◽  
pp. 10599-10608 ◽  
Author(s):  
Zhenglong Li ◽  
Jun Li ◽  
Mathew Gunshor ◽  
Szu‐Chia Moeller ◽  
Timothy J. Schmit ◽  
...  

2012 ◽  
Vol 25 (17) ◽  
pp. 5845-5863 ◽  
Author(s):  
Ian A. MacKenzie ◽  
Simon F. B. Tett ◽  
Anders V. Lindfors

Abstract Clear-sky brightness temperature measurements from the High-Resolution Infrared Radiation Sounder (HIRS) are simulated with two climate models via a radiative transfer code. The models are sampled along the HIRS orbit paths to derive diurnal climatologies of simulated brightness temperature analogous to an existing climatology based on HIRS observations. Simulated and observed climatologies are compared to assess model performance and the robustness of the observed climatology. Over land, there is good agreement between simulations and observations, with particularly high consistency for the tropospheric temperature channels. Diurnal cycles in the middle- and upper-tropospheric water vapor channels are weak in both simulations and observations, but the simulated diurnal brightness temperature ranges are smaller than are observed with different phase and there are also intermodel differences. Over sea, the absence of diurnal variability in the models’ sea surface temperatures causes an underestimate of the small diurnal cycles measured in the troposphere. The simulated and observed climatologies imply similar diurnal sampling biases in the HIRS record for the tropospheric temperature channels, but for the upper-tropospheric water vapor channel, differences in the contributions of the 24- and 12-hourly diurnal harmonics lead to differences in the implied bias. Comparison of diurnal cycles derived from HIRS-like and full model sampling suggests that the HIRS measurements are sufficient to fully constrain the diurnal behavior. Overall, the results suggest that recent climate models well represent the major processes driving the diurnal behavior of clear-sky brightness temperature in the HIRS channels. This encourages further studies of observed and simulated climate trends over the HIRS era.


2011 ◽  
Vol 53 (12) ◽  
pp. 2450-2454
Author(s):  
V. O. Shein ◽  
A. V. Van’kevich ◽  
N. M. Borisova ◽  
A. G. Anders

Sign in / Sign up

Export Citation Format

Share Document