Arc Flash Calculations Using a Physics-Based Circuit Model

2012 ◽  
Vol 48 (4) ◽  
pp. 1230-1236 ◽  
Author(s):  
Thomas Papallo
Keyword(s):  
2020 ◽  
pp. 67-78
Author(s):  
Nandan Kumar ◽  
Sainath Shrikant Pawaskar

Flash fire caused by electric arc is different than that caused by flammable liquids/fumes or combustible dusts. A suitable protective clothing for protection against electric arc-flash must be designed as per Indian weather conditions. Currently available garments are manufactured using two or three layers of woven/nonwoven combinations to achieve higher Hazard Risk Category (HRC) rating (level 3 and above). However, they are heavy and not comfortable to the end users. Savesplash® is a single layer inherent flame-retardant knitted fabric. Its arc rating was determined using ASTM standards. It achieved arc thermal performance value (ATPV) of 41 cal/cm2, breakopen threshold energy (E_BT) of 42 cal/cm2 and heat attenuation factor (HAF) of 94% when tested as per ASTM F1959/F1959M-14 which translated into an arc rating of 41 cal/cm2. This is equivalent to HRC level 4 ratings as per National Fire Protection Association’s NFPA 70E standard (USA). Further, cut and sewn gloves (HM-100) developed using Savesplash® fabric reinforced with leather on palm area achieved ATPV of 63 cal/cm2 and HAF of 94.5% when tested as per ASTM F2675/F2675M-13.


2015 ◽  
Vol 135 (3) ◽  
pp. 200-206 ◽  
Author(s):  
Yoki Ikeda ◽  
Naoto Nagaoka ◽  
Yoshihiro Baba

2012 ◽  
Vol 132 (1) ◽  
pp. 1-9 ◽  
Author(s):  
Satoshi Maruyama ◽  
Muneki Nakada ◽  
Makoto Mita ◽  
Takuya Takahashi ◽  
Hiroyuki Fujita ◽  
...  

Author(s):  
Chunlei Wu ◽  
Suying Yao

Abstract As semiconductor technology continues to advance to smaller dimensions and more complex circuit designs, it is becoming more challenging to locate the resistive short directly between two metal lines (signals) due to a metal bridge defect. Especially these two metal lines are very long and relevant to many functional modules. After studying the failed circuit model, we found there should be a tiny leakage between one of the bridged signals and one of common power signals (such as VDD and GND) on a failed IC compared with the reference one, if there is a metal bridge defect between these two bridged signals. The tiny leakage between one of the bridged signals and one of power signals is an indirect leakage that is a mapping of the direct resistive short between these two bridged signals. The metal bridge defect could be pinpointed with the tiny leakage between one of the bridged signals and one of power signals by Lock-in IR-OBIRCH. It is an easier and faster way to locate the metal bridge defects. In this paper, the basic and simple circuit model with a metal bridge defect will be presented and two cases will be studied to demonstrate how to localize a metal bridge defect by the tiny leakage between one of the bridged signals and one of power signals.


Sign in / Sign up

Export Citation Format

Share Document