Optimal Zero-Voltage-Switching Method and Variable ON-Time Control for Predictive Boundary Conduction Mode Boost PFC Converter

2020 ◽  
Vol 56 (1) ◽  
pp. 527-540 ◽  
Author(s):  
Jizhe Wang ◽  
Haruhi Eto ◽  
Fujio Kurokawa
2020 ◽  
Vol 67 (2) ◽  
pp. 1544-1554 ◽  
Author(s):  
Juan C. Hernandez ◽  
Maria C. Mira ◽  
Lars P. Petersen ◽  
Michael A. E. Andersen ◽  
Niels H. Petersen

Electronics ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 2154
Author(s):  
María R. Rogina ◽  
Alberto Rodríguez ◽  
Aitor Vázquez ◽  
Diego G. Lamar ◽  
Marta M. Hernando

This paper is focused on the design of a control approach, based on the detection of events and changing between two different conduction modes, to reach high efficiency over the entire power range, especially at medium and low power levels. Although the proposed control strategy can be generalized for different topologies and specifications, in this paper, the strategy is validated in a SiC-based synchronous boost DC/DC converter rated for 400 V to 800 V and 10 kW. Evaluation of the power losses and current waveforms of the converter for different conduction modes and loads predicts suitable performance of quasi-square wave mode with zero voltage switching (QSW-ZVS) conduction mode for low and medium power and of continuous conduction Mode with hard switching (CCM-HS) for high power. Consequently, this paper proposes a control strategy, taking advantage of digital control, that allows automatic adjustment of the conduction mode to optimize the performance for different power ranges.


This paper pledges with replication and portrayal of a zero voltage switching of SEPIC for the purpose of photovoltaic application. A source of energy is given by photovoltaic panel. A impose capacitor and an supporting switch are coupled. A supporting inductors and combined inductors are second-hand to accomplish ripple less current of input then Zero voltage switching method of the supporting switches with head switch. The dynamic fix strategy and the technique of voltage multiplier are practical to the conventionalist converter of SEPIC to support the addition of voltage, compact down the worries of voltage of the diode and matchless quality switches. Moreover, with utilizing essentialness among the inductor's blasting and voltage multiplier circuit's capacitor, Diode's of output ZCS strategy is accomplished and its inverse recuperation trouncing be broadly consolidated. charge to the power semiconductor gadget's delicate exchanging correspondence and improved the proposed system. The realistic speculative assessment has been affirmed through an example of 80W and 100KHz converter. What's more, determined ability of anticipated converter has been accomplished an expense of 94.8% at the most elevated yield control.


Sign in / Sign up

Export Citation Format

Share Document