scholarly journals Zero Sequence Current Suppression Strategy of Open Winding PMSG System with Common DC Bus based on Zero Vector Redistribution

Author(s):  
Yijie Zhou ◽  
Heng Nian
2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
Yingjie Wang ◽  
Haiyuan Liu ◽  
Wenchao Wang ◽  
Kangan Wang

The neutral-point (NP) potential balance control in three-level neutral-point-clamped (NPC) back-to-back converter is a research nodus. Its current strategies are the same as the strategies of a single three-level NPC converter. But the strategies do not give full play to its advantages that the neutral-point current can only flow through the connected midlines in both sides of the converter but does not flow through the DC-bus capacitors. In this paper, firstly the NP potential model based on the NP current injected is proposed. It overcomes numerous variable constraints and mutual coupling in the conventional model based on the zero-sequence voltage injected. And then on this basis, three NP-potential balance control algorithms, unilateral control, bilateral independent control, and bilateral coordinated control, are proposed according to difference requirements. All of these algorithms use the midlines rather than the DC-bus capacitors to flow the NP current as much as possible. Their control abilities are further quantitatively analyzed and compared. Finally, simulation results verify the validity and effectiveness of these algorithms.


2020 ◽  
Vol 10 (5) ◽  
pp. 1703 ◽  
Author(s):  
Zhao Han ◽  
Xiaoli Wang ◽  
Baochen Jiang ◽  
Jingru Chen

In microgrids, paralleled converters can increase the system capacity and conversion efficiency but also generate zero-sequence circulating current, which will distort the AC-side current and increase power losses. Studies have shown that, for two paralleled three-phase voltage-source pulse width modulation (PWM) converters with common DC bus controlled by space vector PWM, the zero-sequence circulating current is mainly related to the difference of the zero-sequence duty ratio between the converters. Therefore, based on the traditional control ideal of zero-vector action time adjustment, this paper proposes a zero-sequence circulating current suppression strategy using proportional–integral quasi-resonant control and feedforward compensation control. Firstly, the dual-loop decoupled control was utilized in a single converter. Then, in order to reduce the amplitude and main harmonic components of the circulating current, a zero-vector duty ratio adjusting factor was initially generated by a proportional–integral quasi-resonant controller. Finally, to eliminate the difference of zero-sequence duty ratio between the converters, the adjusting factor was corrected by a feedforward compensation link. The simulation mode of Matlab/Simulink was constructed for the paralleled converters based on the proposed control strategy. The results verify that this strategy can effectively suppress the zero-sequence circulating current and improve power quality.


2019 ◽  
Vol 34 (12) ◽  
pp. 12476-12490 ◽  
Author(s):  
Zewei Shen ◽  
Dong Jiang ◽  
Lei Zhu ◽  
Yunsong Xu ◽  
Tianjie Zou ◽  
...  
Keyword(s):  

2016 ◽  
Vol 63 (11) ◽  
pp. 6777-6789 ◽  
Author(s):  
Hanlin Zhan ◽  
Z. Q. Zhu ◽  
Milijana Odavic ◽  
Yanxin Li
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document