scholarly journals A Novel Neutral-Point Potential Balance Strategy for Three-Level NPC Back-to-Back Converter Based on the Neutral-Point Current Injection Model

2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
Yingjie Wang ◽  
Haiyuan Liu ◽  
Wenchao Wang ◽  
Kangan Wang

The neutral-point (NP) potential balance control in three-level neutral-point-clamped (NPC) back-to-back converter is a research nodus. Its current strategies are the same as the strategies of a single three-level NPC converter. But the strategies do not give full play to its advantages that the neutral-point current can only flow through the connected midlines in both sides of the converter but does not flow through the DC-bus capacitors. In this paper, firstly the NP potential model based on the NP current injected is proposed. It overcomes numerous variable constraints and mutual coupling in the conventional model based on the zero-sequence voltage injected. And then on this basis, three NP-potential balance control algorithms, unilateral control, bilateral independent control, and bilateral coordinated control, are proposed according to difference requirements. All of these algorithms use the midlines rather than the DC-bus capacitors to flow the NP current as much as possible. Their control abilities are further quantitatively analyzed and compared. Finally, simulation results verify the validity and effectiveness of these algorithms.

Electronics ◽  
2019 ◽  
Vol 8 (6) ◽  
pp. 691 ◽  
Author(s):  
Ju-Yong Kim ◽  
Ho-Sung Kim ◽  
Ju-Won Baek ◽  
Dong-Keun Jeong

Low-voltage direct current (LVDC) distribution has attracted attention due to increased DC loads, the popularization of electric vehicles, energy storage systems (ESS), and renewable energy sources such as photovoltaic (PV). This paper studies a ±750 V bipolar DC distribution system and applies a 3-level neutral-point clamped (NPC) AC/DC converter for LVDC distribution. However, the 3-level NPC converter is fundamental in the neutral-point (NP) imbalance problem. This paper discusses the NP balance control method using zero-sequence voltage among various solutions to solve NP imbalance. However, since the zero-sequence voltage for NP balance control is limited, the NP voltage cannot be controlled to be balanced when extreme load differences occur. To maintain microgrid stability with bipolar LVDC distribution, it is necessary to control the NP voltage balance, even in an imbalance of extreme load. In addition, due to the bipolar LVDC distribution, the pole where a short-circuit condition occurs limits the short current until the circuit breaker operates, and a pole without a short-circuit condition must supply a stable voltage. Since the conventional 3-level NPC AC/DC converter alone cannot satisfy both functions, an additional DC/DC converter is proposed, analyzed, and verified. This paper is about a 3-level NPC AC/DC converter system for LVDC distribution. It can be used for the imbalance and short-circuit condition in bipolar LVDC distribution through the prototype of the 300 kW 3-level NPC AC/DC converter system and experimented and verified in various conditions.


Electronics ◽  
2021 ◽  
Vol 10 (23) ◽  
pp. 3041
Author(s):  
Guozheng Zhang ◽  
Yingjie Su ◽  
Zhanqing Zhou ◽  
Qiang Geng

For the conventional carrier-based pulse width modulation (CBPWM) strategies of neutral point clamped (NPC) three-level inverters, the higher common-mode voltage (CMV) is a major drawback. However, with CMV suppression strategies, the switching loss is relatively high. In order to solve the above issue, a carrier-based discontinuous PWM (DPWM) strategy for NPC three-level inverter is proposed in this paper. Firstly, the reference voltage is modified by the twice injection of zero-sequence voltage. Switching states of the three-phase are clamped alternatively to reduce both the CMV and the switching loss. Secondly, the carriers are also modified by the phase opposite disposition of the upper and lower carriers. The extra switching at the border of two adjacent regions in the space vector diagram is reduced. Meanwhile, a neutral-point voltage (NPV) control method is also presented. The duty cycle of the switching state that affects the NPV is adjusted to obtain the balance control of the NPV. Still, the switching sequence in each carrier period remains the same. Finally, the feasibility and effectiveness of the proposed DPWM strategy are tested on a rapid control prototype platform based on RT-Lab.


Sign in / Sign up

Export Citation Format

Share Document