A Demand Response Energy Management Scheme for Industrial Facilities in Smart Grid

2014 ◽  
Vol 10 (4) ◽  
pp. 2257-2269 ◽  
Author(s):  
Yue Min Ding ◽  
Seung Ho Hong ◽  
Xiao Hui Li
Author(s):  
Oladayo O. Olakanmi ◽  
Oluyemi Adetoyi ◽  
Oluwafemi Fajemisin

Abstract Despite the benefits of demand response in energy management, the non-existence of its key concepts; dynamic pricing and smart grid, in some countries makes its impracticable in these countries, therefore making energy management unattainable for their consumers. This paper proposed a Smart Distribution Board (SDB) using a priority model for energy management in non-smart grid network. An historical consumption signatures of user’s loads were used to develop a priority model for load units of the SDB. Performance comparison was carried out between the SDB and a conventional Distribution Board which has no level of intelligence. Results obtained indicated that the SDB correctly emulated the energy usage pattern of users, thereby ensuring load preference is maximally satisfied autonomously within a limited budgeted energy and period.


Energies ◽  
2020 ◽  
Vol 13 (17) ◽  
pp. 4288 ◽  
Author(s):  
Md Mamun Ur Rashid ◽  
Fabrizio Granelli ◽  
Md. Alamgir Hossain ◽  
Md. Shafiul Alam ◽  
Fahad Saleh Al-Ismail ◽  
...  

The steady increase in energy demand for residential consumers requires an efficient energy management scheme. Utility organizations encourage household applicants to engage in residential energy management (REM) system. The utility’s primary goal is to reduce system peak load demand while consumer intends to reduce electricity bills. The benefits of REM can be enhanced with renewable energy sources (RESs), backup battery storage system (BBSS), and optimal power-sharing strategies. This paper aims to reduce energy usages and monetary cost for smart grid communities with an efficient home energy management scheme (HEMS). Normally, the residential consumer deals with numerous smart home appliances that have various operating time priorities depending on consumer preferences. In this paper, a cost-efficient power-sharing technique is developed which works based on priorities of appliances’ operating time. The home appliances are sorted on priority basis and the BBSS are charged and discharged based on the energy availability within the smart grid communities and real time energy pricing. The benefits of optimal power-sharing techniques with the RESs and BBSS are analyzed by taking three different scenarios which are simulated by C++ software package. Extensive case studies are carried out to validate the effectiveness of the proposed energy management scheme. It is demonstrated that the proposed method can save energy and reduce electricity cost up to 35% and 45% compared to the existing methods.


Systems ◽  
2020 ◽  
Vol 8 (3) ◽  
pp. 33 ◽  
Author(s):  
Stylianos Karatzas ◽  
Athanasios Chassiakos

Inelasticity of demand along with the distributed energy sources and energy market democratization pose significant challenges which have considerable negative impacts on overall grid balance. The need for increased capacity and flexibility in the era of energy market digitalization has introduced new requirements in the energy supply network which could not be satisfied without continuous and costly local power network upgrades. Additionally, with the emergence of Smart Homes (SHs) and Home Energy Management (HEM) systems for monitoring and operating household appliances, opportunities have arisen for automated Demand Response (DR). DR is exploited for the modification of the consumer energy demand, in response to the specific conditions within the electricity system (e.g., peak period network congestion). In order to optimally integrate DR in the broader Smart Grid (SG) system, modelling of the system parameters and safety analysis is required. In this paper, the implementation of STPA (System-Theoretic Process Analysis) structured method, as a relatively new hazard analysis technique for complex systems is presented and the feasibility of STPA implementation for loss prevention on a Demand Response system for home energy management, and within the complex SG context, is examined. The applied method delivers a mechanism useful in understanding where gaps in current operational risk structures may exist. The STPA findings in terms of loss scenarios can be used to generate a variety of safeguards to ensure secure operational control and in implementing targeted strategies through standard approaches of risk assessment.


2020 ◽  
Vol 15 ◽  

Effective usage of Information and Communication Technologies (ICT) has started with a paradigm shift in the energy management and functioning of the conventional power grid. It also aids in the maintenance of the complete information about consumer usage pattern, power storage, supply and regulation. Blending of information and communication technologies with energy management creates a smart grid environment which makes it move to the next horizon. The smart grid environment, uplifts renewable energy sources and brings out novel strategies in the energy market. The new functioning of the energy market attracts more utility companies for decentralized power generation and optimizes the power price for the consumer. The consumer plays an active role in the demand response modelling to maximize the welfare of the utility and to obtain the optimized price for their demand. In this paper, a novel demand response management scheme is proposed for multi-utility environment. The utility companies function in a peer to peer manner to communicate effectively and to select a specific utility from a set of utilities for the power supply. The selection of single utility is based on a non-cooperative game theory algorithm where the demand and generated power should be balanced to maximize the welfare of the utility and the residential consumers. The power price can be updated in an equal interval to allow all the utilities to participate in the Distributed Multi-Utility Demand Response Management (DMDRM) system. The simulated results justify that the distributed noncooperative game theory algorithm certainly maximizes the welfare of the utility companies and residential consumers.


Sign in / Sign up

Export Citation Format

Share Document