Partial Discharge Random Noise Removal Using Hankel Matrix-Based Fast Singular Value Decomposition

2020 ◽  
Vol 69 (7) ◽  
pp. 4093-4102 ◽  
Author(s):  
Suganya Govindarajan ◽  
Jayalalitha Subbaiah ◽  
Andrea Cavallini ◽  
Kannan Krithivasan ◽  
Jaikanth Jayakumar
2021 ◽  
Author(s):  
Rui Jorge Oliveira ◽  
Bento Caldeira ◽  
Teresa Teixidó ◽  
José Fernando Borges

<p>The ground-penetrating radar (GPR) datasets obtained in archaeological environments have substantial problems related the presence of clutter noise. These noisy reflections are generated by the heterogeneities of the ground and by the collapses of structures buried in the ground, that can prevent a good assessment of the subsurface with this method. The classic filtering operations available can fail to remove it effectively. This work presents an approach to filtering the GPR data in the 2D spectral domain through the singular value decomposition (SVD) factorization technique. The spectral domain present advantages such as the circular symmetry of the transformed data that turns easy the filter parametrisation and the constant computational effort whatever the amount of data considered. SVD allows the decreasing of the user dependency to parametrize the filter. The main propose of this method is to classify automatically the datasets into useful information, corresponding to buried structures, and noise, to remove the last. This approach was conceived based on the study of the GPR signal in the 2D spectral domain and the manual filter design. The tests were performed with different datasets, one from a laboratory experiment (controlled environment) and the other from a field acquisition in an archaeological site (uncontrolled environment) with subsequent excavation to proof the results. The proposed approach is effective to remove the clutter noise in the GPR datasets and constitutes a complementary operation to those already existing in the commercial software.</p><p> </p><p>Acknowledgment: The work was supported by the Portuguese Foundation for Science and Technology (FCT) project UIDB/04683/2020 - ICT (Institute of Earth Sciences) and by the INTERREG 2014-2020 Program, through the "Innovación abierta e inteligente en la EUROACE" Project, with the reference 0049_INNOACE_4_E.</p>


2014 ◽  
Vol 644-650 ◽  
pp. 4551-4554
Author(s):  
Hui Ai ◽  
Jin Feng Hu ◽  
Wan Ge Li ◽  
Zhi Rong Lin ◽  
Ya Xuan Zhang

The echo signals of sky-wave over-the-horizon radar involve ionospheric phase contamination with spectrum expansion. The bragg peaks expand and cover the frequency spectrum of low speed target. So ionospheric phase decontamination is necessary before coherent integration. The traditional Hankel Rank Reduction (HRR) phase decontamination method constructs the Hankel matrix by folding the echo signal, estimating instantaneous frequency through singular value decomposition. But HRR method requires the prior information of signal components. The estimation is invalid without priori information. The algorithm presented in this paper does not require the priori information. The algorithm based on matched fourier transform can accurately estimate the phase contamination function for the clutter noise ratio is high. Simulation shows that the proposed algorithm has better performance in phase decontamination.


Geophysics ◽  
1991 ◽  
Vol 56 (4) ◽  
pp. 528-533 ◽  
Author(s):  
G. M. Jackson ◽  
I. M. Mason ◽  
S. A. Greenhalgh

Polarization analysis can be achieved efficiently by treating a time window of a single‐station triaxial recording as a matrix and doing a singular value decomposition (SVD) of this seismic data matrix. SVD of the triaxial data matrix produces an eigenanalysis of the data covariance (cross‐energy) matrix and a rotation of the data onto the directions given by the eigenanalysis (Karhunen‐Loève transform), all in one step. SVD provides a complete principal components analysis of the data in the analysis time window. Selection of this time window is crucial to the success of the analysis and is governed by three considerations: the window should contain only one arrival; the window should be such that the signal‐to‐noise ratio is maximized; and the window should be long enough to be able to discriminate random noise from signal. The SVD analysis provides estimates of signal, signal polarization directions, and noise. An F‐test is proposed which gives the confidence level for the hypothesis of rectilinear polarization. This paper illustrates the analysis and interpretation of synthetic rectilinearly and elliptically polarized arrivals at a single triaxial station by SVD.


2012 ◽  
Vol 220-223 ◽  
pp. 785-788
Author(s):  
Chang Zheng Chen ◽  
Quan Gu ◽  
Bo Zhou

This paper researches fault feature extraction method based on singular value decomposition and the improved HHT method for non-stationary characteristics of wind turbine gearbox vibration signal. Firstly, through the signal phase space reconstruction, the singular value decomposition as a pre-filter, to preprocessing the signal, effectively weaken the random noise. Then using EEMD to improve the HHT method, decompose the denoising signal into a series of different time scales component of intrinsic mode functions. The fault characteristics of the signal are extracted by the Hilbert transform. Finally, simulating gearbox fault experiment to verify the effectively of the proposed method.


Sign in / Sign up

Export Citation Format

Share Document