buried structures
Recently Published Documents


TOTAL DOCUMENTS

284
(FIVE YEARS 66)

H-INDEX

18
(FIVE YEARS 4)

2021 ◽  
Author(s):  
Jaewoo Jeong ◽  
Taeyeong Kim ◽  
Bong Jae Lee ◽  
Jungchul Lee

Abstract Empty Space in Germanium (ESG) or Germanium-on-Nothing (GON) are unique self-assembled germanium structures with multiscale cavities of various morphologies. Due to their simple fabrication process and high-quality crystallinity after self-assembly, they can be applied in various fields including micro-/nanoelectronics, optoelectronics, and precision sensors, to name a few. In contrast to their simple fabrication, inspection is intrinsically difficult due to buried structures. Today, ultrasonic atomic force microscopy and interferometry are some prevalent non-destructive 3-D imaging methods that are used to inspect the underlying ESG structures. However, these non-destructive characterization methods suffer from low throughput due to slow measurement speed and limited measurable thickness. To overcome these limitations, this work proposes a new methodology to construct a principal-component-analysis based database that correlates surface images with empirically determined sub-surface structures by interpolating the surface topography from the database and determining the buried sub-surface structure. Since the acquisition rate of a single nanoscale surface micrograph is up to a few orders faster than a thorough 3D sub-surface analysis, the proposed methodology would provide an exploitable and decisive advantage over the currently prevalent methods. Also, an empirical destructive test essentially resolves the measurable thickness limitation. We also demonstrate the practicality of the proposed methodology by applying it to GON devices to selectively detect and quantitatively analyze surface defects. Compared to state-of-the-art deep learning-based defect detection schemes, our method is much effortlessly finetunable for specific applications. In terms of sub-surface analysis, this work proposes a fast, robust, and high-resolution methodology which could potentially replace the conventional exhaustive sub-surface inspection schemes.


2021 ◽  
Vol 10 (2) ◽  
pp. 313-323
Author(s):  
M. Andy Kass ◽  
Esben Auken ◽  
Jakob Juul Larsen ◽  
Anders Vest Christiansen

Abstract. Efficient and accurate acquisition of magnetic field and gradient data have applications over a large range of environmental, archaeological, engineering, and geologic investigations. Developments in new systems and improvements in existing platforms have progressed to the point where magnetic surveying is a heavily used and trusted technique. However, there is still ample room to improve accuracy and coverage efficiency and to include reliable vector information. We have developed a vector magnetic gradiometer array capable of recording high-resolution field and gradient data over tens of hectares per day at 50 cm sensor spacing. Towed by an all-terrain vehicle, the system consists of eight vertical gradiometer sensor packages and incorporates differential GPS and an inertial measurement system. With a noise floor of around 6 nT at 15 km/h towing speed and 230 Hz sample rates, large areas can be mapped efficiently and precisely. Data are processed using a straightforward workflow, using both standard and newly developed methodologies. The system described here has been used successfully in Denmark to efficiently map buried structures and objects. We give two examples from such applications highlighting the system's capabilities in archaeological and geological applications.


Geosciences ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 463
Author(s):  
Luca Maria Puzzilli ◽  
Giovanni Bongiovanni ◽  
Paolo Clemente ◽  
Vincenzo Di Fiore ◽  
Vladimiro Verrubbi

The vibration effects on the Torre della Moletta and the ruins of the Circus Maximus in Rome are analyzed in the framework of a preservation effort of this archaeological area. Thanks to its exceptional size, the Circus hosts many social events with large audience (pop-music, opera concerts, sport celebrations, etc.) every year, thus taking the structures under high anthropic and environmental stress. Recordings were completed before, during, and after the concert of a famous band, on 7 September 2019. Data were analyzed, both in time and frequency domains. The experimental dynamic recordings were coupled with a surface waves test and single-station ambient vibration recordings, which were useful for the geotechnical characterization of the soil. The results pointed out the differences in amplitudes but also in terms of frequency content of the recorded velocities during the concert with respect to before and after it. The maximum velocities recorded at various locations were almost similar to the limit values suggested by codes. The dynamic behavior of the ground and the structures is influenced by the presence of buried structures.


Author(s):  
Luke A. Clifton

Neutron reflectometry (NR) is a large-facility technique used to examine structure at interfaces. In this brief review an introduction to the utilisation of NR in the study of protein–lipid interactions is given. Cold neutron beams penetrate matter deeply, have low energies, wavelengths in the Ångstrom regime and are sensitive to light elements. High differential hydrogen sensitivity (between protium and deuterium) enables solution and sample isotopic labelling to be utilised to enhance or diminish the scattering signal of individual components within complex biological structures. The combination of these effects means NR can probe buried structures such as those at the solid–liquid interface and encode molecular level structural information on interfacial protein–lipid complexes revealing the relative distribution of components as well as the overall structure. Model biological membrane sample systems can be structurally probed to examine phenomena such as antimicrobial mode of activity, as well as structural and mechanistic properties peripheral/integral proteins within membrane complexes. Here, the example of the antimicrobial protein α1-purothionin binding to a model Gram negative bacterial outer membrane is used to highlight the utilisation of this technique, detailing how changes in the protein/lipid distributions across the membrane before and after the protein interaction can be easily encoded using hydrogen isotope labelling.


2021 ◽  
Author(s):  
M. Andy Kass ◽  
Esben Auken ◽  
Jakob Juul Larsen ◽  
Anders Vest Christiansen

Abstract. Efficient and accurate acquisition of magnetic field and gradient data have applications over a large range of environmental, archaeological, engineering, and geologic investigations. Developments in new systems and improvements in existing platforms have progressed to the point where magnetic surveying is a heavily used and trusted technique. However, there is still ample room to improve accuracy, coverage efficiency, and to include reliable vector information. We have developed a vector magnetic gradiometer array capable of recording high resolution field and gradient data over tens of hectares per day at 50 cm sensor spacing. Towed by an all-terrain vehicle, the system consists of 8 vertical gradiometer sensor packages, and incorporates differential GPS and an inertial measurement system. With a noise floor of around 6 nT at 15 km/h towing speed and 230 Hz sample rates, large areas can be mapped efficiently and precisely. Data are processed using a straightforward workflow, using both standard and newly developed methodologies. The system described here has been used successfully in Denmark to efficiently map buried structures and objects. We give two examples from such applications highlighting the system’s capabilities in archaeological and geological applications.


2021 ◽  
Vol 13 (12) ◽  
pp. 2384
Author(s):  
Roland Filzwieser ◽  
Vujadin Ivanišević ◽  
Geert J. Verhoeven ◽  
Christian Gugl ◽  
Klaus Löcker ◽  
...  

Large parts of the urban layout of the abandoned Roman town of Bassianae (in present-day Serbia) are still discernible on the surface today due to the deliberate and targeted quarrying of the Roman foundations. In 2014, all of the town's intramural (and some extramural) areas were surveyed using aerial photography, ground-penetrating radar, and magnetometry to analyze the site's topography and to map remaining buried structures. The surveys showed a strong agreement between the digital surface model derived from the aerial photographs and the geophysical prospection data. However, many structures could only be detected by one method, underlining the benefits of a complementary archaeological prospection approach using multiple methods. This article presents the results of the extensive surveys and their comprehensive integrative interpretation, discussing Bassianae's ground plan and urban infrastructure. Starting with an overview of this Roman town's research history, we present the details of the triple prospection approach, followed by the processing, integrative analysis, and interpretation of the acquired data sets. Finally, this newly gained information is contrasted with a plan of Roman Bassianae compiled in 1935.


2021 ◽  
Vol 9 ◽  
Author(s):  
A. E. El Emam ◽  
A. Lethy ◽  
Ali M. Radwan ◽  
A. Awad

An archeological study using magnetic and ground-penetrating radar methods has been performed at the Dahshour region (Giza, Egypt), where various covered structures have not been found because of the long coercion of the zone under the military specialists. Dahshour is the southern extension of the Saqqara and Giza Pyramids plateau, around 25 km south of Cairo. The area is known for its colored pyramids—the white, red, and black pyramids, and the famous Bent Pyramid. Four investigation sites were chosen around the Bent Pyramid complex. The geophysical investigation has revealed the presence of some buried structures made up of mud bricks such as tombs, mud-brick walls, causeway, and remains of an ancient temple. Numerous limestone blocks were also detected. The study indicates the possible existence of an older valley temple made up of mud bricks and confirms the existence of another causeway that led to the Nile Valley. To protect the Egyptian heritage around this vital area, a detailed computation of the current crustal stress/strain state has been performed by taking into account all the available GPS observations. Achieved results indicated that the southern and the southeastern sectors of the investigated area are currently accumulating strain, and this means that there is a possibility for future earthquakes to occur around this vital archaeological area. Buried structures are preserved by confinement in the burial materials like a large mold. However, external load or stress can still cause damage. Therefore, during excavation, the stress should be reduced to avoid wall collapsing and structure damage. Therefore, it is recommended to start excavation from the stress direction from the southern side.


2021 ◽  
Author(s):  
Kaveh Dehghanian

Buried structures are categorized based on their shape, size and location. These main categories are near surface structures (e.g., pipes and other facilities), large section structures (e.g., tunnels, subways, etc.), and vertical underground structures (e.g., shafts and ducts). Seismic assessments of these structures are important in areas close to severe seismic sources. Seismic design of tunnels requires calculation of the deformation in surrounding geological formations. The seismic hazard on a site is usually expressed as a function of amplitude parameters of free-field motion. Therefore, simplified relations between depth and parameters of ground motion are necessary for preliminary designs. The objective of this chapter is to study and review the main analytical seismic methods which are used to develop a simple relationship between maximum shear strain, maximum shear stress and other seismic parameters.


2021 ◽  
Vol 13 (9) ◽  
pp. 5087
Author(s):  
Hany El Naggar ◽  
Ali Iranikhah

Although some discarded tires are reused in various applications, a considerable number end up in landfills, where they pose diverse environmental problems. Waste tires that are shredded to produce tire-derived aggregates (TDA) can be reused in geotechnical engineering applications. Many studies have already been conducted to examine the behavior of pure TDA and soil-TDA mixtures. However, few studies have investigated the behavior of larger TDA particles, 20 to 75 mm in size, mixed with various types of soil at percentages ranging from 0% to 100%. In this study, TDA was mixed with gravelly, sandy, and clayey soils to determine the optimum soil-TDA mixtures for each soil type. A large-scale direct shear box (305 mm × 305 mm × 220 mm) was used, and the mixtures were examined with a series of direct shear tests at confining pressures of 50.1, 98.8, and 196.4 kPa. The test results indicated that the addition of TDA to the considered soils significantly reduces the dry unit weight, making the mixtures attractive for applications requiring lightweight fill materials. It was found that adding TDA to gravel decreases the shear resistance for all considered TDA contents. On the contrary, adding up to 10% TDA by weight to the sandy or clayey soils was found to increase the shear resistance of the mixtures. Adding up to 10% TDA by weight to the clayey soil also sharply increased the angle of internal friction from 18.8° to 32.3°. Moreover, it was also found that the addition of 25% TDA by weight to the gravelly or sandy soils can reduce the lateral earth pressure on buried structures by up to 20%. In comparison, adding 10% TDA to clay resulted in a 36% reduction in the lateral earth pressure.


Sign in / Sign up

Export Citation Format

Share Document