Investigation of displacement of intracranial electrode induced by focused ultrasound stimulation

Author(s):  
Min Gon Kim ◽  
Kai Yu ◽  
Xiaodan Niu ◽  
Bin He
2019 ◽  
Vol 45 (2) ◽  
pp. 481-489 ◽  
Author(s):  
Kelsey M. Wasilczuk ◽  
Kelsey C. Bayer ◽  
Jesse P. Somann ◽  
Gabriel O. Albors ◽  
Jennifer Sturgis ◽  
...  

Neuroreport ◽  
2016 ◽  
Vol 27 (7) ◽  
pp. 508-515 ◽  
Author(s):  
Yi Yuan ◽  
Jiaqing Yan ◽  
Zhitao Ma ◽  
Xiaoli Li

Author(s):  
Christine Park ◽  
Mengyue Chen ◽  
Taewon Kim

Low-intensity transcranial focused ultrasound (LI-tFUS) stimulation is a non-invasive neuromodulation tool that demonstrates high target localization accuracy and depth penetration. It has been shown to modulate activities in the primary motor and somatosensory cortex. Previous studies in animals and humans acknowledged the possibility of indirect stimulation of the peripheral auditory pathway that could confound the somatosensory and motor responses observed with LI-tFUS stimulation. Here, we discuss the implications and interpretations of auditory confounding in the context of neuromodulation.


Stroke ◽  
2020 ◽  
Vol 51 (Suppl_1) ◽  
Author(s):  
Mersedeh Bahr Hosseini ◽  
Norman Spivak ◽  
Martin Monti ◽  
Alex Korb ◽  
Jeffrey L Saver

Introduction: In multiple animal models of ischemic stroke, cerebellar fastigial nucleus stimulation (FNS) via implanted electrode has been shown to exert strong neuroprotective and collateral enhancement effects. Translational studies of FNS have been precluded due to the invasive nature of direct electrical stimulation. Recently, low-intensity focused ultrasound pulsation (LIFUP) has been used to stimulate deep hemispheric targets. Identifying achievable anatomic trajectories for LIFUP delivery is required for human trials. Method: Sagittal brain MRI T1 from 10 patients were analyzed. Potential pathways from the suboccipital (SO) region (transducer placement site) to the roof of the 4 th ventricle (location of FN) were traced, evaluating paths both via the thinnest portion of the occipital bone (OB) and via the transforaminal window (TFW). Interindividual variations in trajectory distances (cm), thickness of the OB through which the beam passes (cm), and the projected neck flexion degree from neutral position required to achieve a TFW path were measured. Results: An achievable anatomic pathway for stimulation of the FN via LIFUP was identified in 100% of patients (Fig 1). In standard MR positioning, 90% had an available path through thin portions of the OB and 10% had a projected path through TFW. The mean distance from the skin at the SO region to the roof of 4 th ventricle/FN was 7.2 cm (± 0.64cm). The mean OB thickness traversed by the beam was 0.3cm (±0.1). The projected required neck flexion to enable a TFW in all subjects was mean 9.3° (±5°). Conclusions: The distance for the LIFUP beam to travel from skin surface to FN via a suboccipital approach is well within the LIFUP penetration depth and all individuals had an accessible trajectory via the TFW through attainable degrees of head flexion, affording minimal ultrasonic energy dispersion and maximal focality. Ultrasound stimulation of fastigial nucleus is a feasible treatment strategy in human acute ischemic stroke.


2019 ◽  
Vol 12 (6) ◽  
pp. 1367-1380 ◽  
Author(s):  
Cristina Pasquinelli ◽  
Lars G. Hanson ◽  
Hartwig R. Siebner ◽  
Hyunjoo J. Lee ◽  
Axel Thielscher

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Jérémy Vion-Bailly ◽  
W. Apoutou N’Djin ◽  
Ivan Mauricio Suarez Castellanos ◽  
Jean-Louis Mestas ◽  
Alexandre Carpentier ◽  
...  

Abstract Focused ultrasound are considered to be a promising tool for the treatment of neurological conditions, overcoming the limitations of current neurostimulation techniques in terms of spatial resolution and invasiveness. Much evidence to support the feasibility of ultrasound activation of neurons at the systemic level has already been provided, but to this day, the biophysical mechanisms underlying ultrasound neurostimulation are still widely unknown. In order to be able to establish a clear and robust causality between acoustic parameters of the excitation and neurobiological characteristics of the response, it is necessary to work at the cellular level, or alternatively on very simple animal models. The study reported here responds to three objectives. Firstly, to propose a simple nervous model for the study of the ultrasound neurostimulation phenomenon, associated with a clear and simple experimental protocol. Secondly, to compare the characteristics of this model’s nervous response to ultrasound neurostimulation with its nervous response to mechanical and electrical stimulation. Thirdly, to study the role played by certain acoustic parameters in the success rate of the phenomenon of ultrasound stimulation. The feasibility of generating action potentials (APs) in the giant axons of an earthworm’s ventral nerve cord, using pulsed ultrasound stimuli (f = 1.1 MHz, Ncycles = 175–1150, PRF = 25–125 Hz, Npulses = 20, PA = 2.5–7.3 MPa), was demonstrated. The time of generation (TOG) of APs associated with ultrasound stimulation was found to be significantly shorter and more stable than the TOG associated with mechanical stimulation (p < 0.001). By applying a causal approach to interpret the results of this study, it was concluded that, in this model, the nervous response to focused ultrasound is initiated along the afferent neurons, in between the mechanosensors and the synaptic connections with the giant axons. Additionally, early results are provided, highlighting a trend for the success rate of ultrasound neurostimulation and number of APs triggered per response to increase with increasing pulse repetition frequency (p < 0.05 and p < 0.001, respectively), increasing pulse duration and increasing pulse amplitude.


Sign in / Sign up

Export Citation Format

Share Document