On the breathability measurement of surgical masks: uncertainty, repeatability and reproducibility analysis

Author(s):  
Juri Taborri ◽  
Beatrice Stocchi ◽  
Giuseppe Calabro ◽  
Stefano Rossi
2014 ◽  
Author(s):  
Kamil Brzozowski ◽  
Martyna Wojtaszek-Nowicka ◽  
Joanna Lukowska ◽  
Mariusz Klencki ◽  
Dorota Slowinska-Klencka

2020 ◽  
Vol 54 (6) ◽  
pp. 410-416
Author(s):  
Joyce M. Hansen ◽  
Scott Weiss ◽  
Terra A. Kremer ◽  
Myrelis Aguilar ◽  
Gerald McDonnell

The COVID-19 pandemic, caused by severe acute respiratory syndrome coronavirus 2, has challenged healthcare providers in maintaining the supply of critical personal protective equipment, including single-use respirators and surgical masks. Single-use respirators and surgical masks can reduce risks from the inhalation of airborne particles and microbial contamination. The recent high-volume demand for single-use respirators and surgical masks has resulted in many healthcare facilities considering processing to address critical shortages. The dry heat process of 80°C (176°F) for two hours (120 min) has been confirmed to be an appropriate method for single-use respirator and surgical mask processing.


2020 ◽  
Author(s):  
Brittany E. Howard ◽  
Ryan M. Thorwarth ◽  
Karam Abi Karam ◽  
Sam L. Snider ◽  
Erica Forzani ◽  
...  
Keyword(s):  

Author(s):  
Giuditta Battistoni ◽  
Diana Cassi ◽  
Marisabel Magnifico ◽  
Giuseppe Pedrazzi ◽  
Marco Di Blasio ◽  
...  

This study investigates the reliability and precision of anthropometric measurements collected from 3D images and acquired under different conditions of head rotation. Various sources of error were examined, and the equivalence between craniofacial data generated from alternative head positions was assessed. 3D captures of a mannequin head were obtained with a stereophotogrammetric system (Face Shape 3D MaxiLine). Image acquisition was performed with no rotations and with various pitch, roll, and yaw angulations. On 3D images, 14 linear distances were measured. Various indices were used to quantify error magnitude, among them the acquisition error, the mean and the maximum intra- and inter-operator measurement error, repeatability and reproducibility error, the standard deviation, and the standard error of errors. Two one-sided tests (TOST) were performed to assess the equivalence between measurements recorded in different head angulations. The maximum intra-operator error was very low (0.336 mm), closely followed by the acquisition error (0.496 mm). The maximum inter-operator error was 0.532 mm, and the highest degree of error was found in reproducibility (0.890 mm). Anthropometric measurements from alternative acquisition conditions resulted in significantly equivalent TOST, with the exception of Zygion (l)–Tragion (l) and Cheek (l)–Tragion (l) distances measured with pitch angulation compared to no rotation position. Face Shape 3D Maxiline has sufficient accuracy for orthodontic and surgical use. Precision was not altered by head orientation, making the acquisition simpler and not constrained to a critical precision as in 2D photographs.


Sign in / Sign up

Export Citation Format

Share Document