scholarly journals Does Head Orientation Influence 3D Facial Imaging? A Study on Accuracy and Precision of Stereophotogrammetric Acquisition

Author(s):  
Giuditta Battistoni ◽  
Diana Cassi ◽  
Marisabel Magnifico ◽  
Giuseppe Pedrazzi ◽  
Marco Di Blasio ◽  
...  

This study investigates the reliability and precision of anthropometric measurements collected from 3D images and acquired under different conditions of head rotation. Various sources of error were examined, and the equivalence between craniofacial data generated from alternative head positions was assessed. 3D captures of a mannequin head were obtained with a stereophotogrammetric system (Face Shape 3D MaxiLine). Image acquisition was performed with no rotations and with various pitch, roll, and yaw angulations. On 3D images, 14 linear distances were measured. Various indices were used to quantify error magnitude, among them the acquisition error, the mean and the maximum intra- and inter-operator measurement error, repeatability and reproducibility error, the standard deviation, and the standard error of errors. Two one-sided tests (TOST) were performed to assess the equivalence between measurements recorded in different head angulations. The maximum intra-operator error was very low (0.336 mm), closely followed by the acquisition error (0.496 mm). The maximum inter-operator error was 0.532 mm, and the highest degree of error was found in reproducibility (0.890 mm). Anthropometric measurements from alternative acquisition conditions resulted in significantly equivalent TOST, with the exception of Zygion (l)–Tragion (l) and Cheek (l)–Tragion (l) distances measured with pitch angulation compared to no rotation position. Face Shape 3D Maxiline has sufficient accuracy for orthodontic and surgical use. Precision was not altered by head orientation, making the acquisition simpler and not constrained to a critical precision as in 2D photographs.

ORL ◽  
2021 ◽  
pp. 1-9
Author(s):  
Ali Karadag ◽  
Baran Bozkurt ◽  
Kaan Yagmurlu ◽  
Ada Irmak Ozcan ◽  
Sean Moen ◽  
...  

Background: The proper head positioning decreases the surgical complications by enabling a better surgical maneuverability. Middle cerebral artery (MCA) bifurcation aneurysms have been classified by Dashti et al. [Surg Neurol. 2007 May;67(5):441–56] as the intertruncal, inferior, lateral, insular, and complex types based on dome projection. Our aim was to identify the optimum head positions and to explain the anatomic variables, which may affect the surgical strategy of MCA bifurcation aneurysms. Methods: The lateral supraorbital approach bilaterally was performed in the 4 cadaveric heads. All steps of the dissection were recorded using digital camera. Results: The distal Sylvian fissure (SF) dissection may be preferred for insular type and the proximal SF dissection may be preferred for all other types. Fifteen degrees head rotation was found as the most suitable position for the intertruncal, lateral type and subtype of complex aneurysms related with superior trunk. Thirty degrees head rotation was found the most suitable position for the inferior type, insular type, and subtype of complex aneurysms related with inferior trunk. Conclusions: The head positioning in middle cerebral bifurcation aneurysms surgery is a critical step. It should be tailored according to the projection and its relationship with the parent vessels of the middle cerebral bifurcation.


2007 ◽  
Vol 97 (1) ◽  
pp. 604-617 ◽  
Author(s):  
Eliana M. Klier ◽  
Hongying Wang ◽  
J. Douglas Crawford

Two central, related questions in motor control are 1) how the brain represents movement directions of various effectors like the eyes and head and 2) how it constrains their redundant degrees of freedom. The interstitial nucleus of Cajal (INC) integrates velocity commands from the gaze control system into position signals for three-dimensional eye and head posture. It has been shown that the right INC encodes clockwise (CW)-up and CW-down eye and head components, whereas the left INC encodes counterclockwise (CCW)-up and CCW-down components, similar to the sensitivity directions of the vertical semicircular canals. For the eyes, these canal-like coordinates align with Listing’s plane (a behavioral strategy limiting torsion about the gaze axis). By analogy, we predicted that the INC also encodes head orientation in canal-like coordinates, but instead, aligned with the coordinate axes for the Fick strategy (which constrains head torsion). Unilateral stimulation (50 μA, 300 Hz, 200 ms) evoked CW head rotations from the right INC and CCW rotations from the left INC, with variable vertical components. The observed axes of head rotation were consistent with a canal-like coordinate system. Moreover, as predicted, these axes remained fixed in the head, rotating with initial head orientation like the horizontal and torsional axes of a Fick coordinate system. This suggests that the head is ordinarily constrained to zero torsion in Fick coordinates by equally activating CW/CCW populations of neurons in the right/left INC. These data support a simple mechanism for controlling head orientation through the alignment of brain stem neural coordinates with natural behavioral constraints.


2007 ◽  
Vol 98 (5) ◽  
pp. 3095-3108 ◽  
Author(s):  
Mikhail Kunin ◽  
Yasuhiro Osaki ◽  
Bernard Cohen ◽  
Theodore Raphan

Static head orientations obey Donders’ law and are postulated to be rotations constrained by a Fick gimbal. Head oscillations can be voluntary or generated during natural locomotion. Whether the rotation axes of the voluntary oscillations or during locomotion are constrained by the same gimbal is unknown and is the subject of this study. Head orientation was monitored with an Optotrak (Northern Digital). Human subjects viewed visual targets wearing pin-hole goggles to achieve static head positions with the eyes centered in the orbit. Incremental rotation axes were determined for pitch and yaw by computing the velocity vectors during head oscillation and during locomotion at 1.5 m/s on a treadmill. Static head orientation could be described by a generalization of the Fick gimbal by having the axis of the second rotation rotate by a fraction, k, of the angle of the first rotation without a third rotation. We have designated this as a k-gimbal system. Incremental rotation axes for both pitch and yaw oscillations were functions of the pitch but not the yaw head positions. The pivot point for head oscillations was close to the midpoint of the interaural line. During locomotion, however, the pivot point was considerably lower. These findings are well explained by an implementation of the k-gimbal model, which has a rotation axis superimposed on a Fick-gimbal system. This could be realized physiologically by the head interface with the dens and occipital condyles during head oscillation with a contribution of the lower spine to pitch during locomotion.


2016 ◽  
Vol 1 (1) ◽  
pp. 22
Author(s):  
Bahruddin Thalib ◽  
Ayu Saputri

Various types of anatomical landmarks of the face should match its proportions with the size of the teeth which is the interalar width, intercomissural width, interpupillary width, Intercanthal width, and byzigomatic width. Some of face landmarks can be used as a guide in the selection of anterior teeth in complete denture, especially if the pre extraction record such as radiography image, extracted teeth, model study, the remaining teeth, face shape, and the shape of the curved jaw have been lost. The objective of this study was to evaluate the correlation between interalar width and intercommisural width against mesiodistal incisivus centralis width in a group of Buginese tribe. Ninety nine Buginese tribe subjects aged 17-25 were selected. The interalar width, intercommisural width, and mesiodistal incisor centralis teeth were measured using caliper about three times for accuracy and precision. Mean of interalar width and mesiodistal incisor centralis maxilla width in males more width than females (p<0.05), and intercommisural width in females more width than males (p>0.05). The degree of correlation between interalar width against mesiodistal incisor centralis maxilla width was 0.030, -0.246, 0,225 in Buginese tribe, males, and females (p>0.05). : The degree of correlation between intercommisural width against  mesiodistal incisor centralis maxilla width in Buginese tribe was 0,054, 0,013, 0,153 in Buginese tribe, males, and females (p>0.05). The degree of correlation between interalar width and intercommisural width was 0.301 and 0.356 in Buginese tribe and males (p<0.05), and 0,281 in females (p>0.05). In conclusion, there is no significant correlation between interalar width and intercommisural width against mesiodistal incisor centralis maxilla width in a group of Buginese tribe. Interalar width and intercommisural width  directly proportional to mesiodistal incisor centralis maxilla in a group of Buginese tribe. Interalar width and intercommisural width  inversely proportional to mesiodistal incisor centralis maxilla in males and directly inversely in females.


2000 ◽  
Vol 10 (6) ◽  
pp. 291-300
Author(s):  
J.I. Kim ◽  
J.T. Somers ◽  
J.S. Stahl ◽  
R. Bhidayasiri ◽  
R.J. Leigh

We measured gaze stability in darkness of four normal humans using the search coil technique. Subjects were tested first with their heads erect, and then with their heads positioned 180 degrees upside-down. In each position, subjects held their head stationary for one minute, and then actively performed pitch rotations for 20 sec. All subjects showed sustained chin-beating nystagmus in the upside-down position. Each subject showed a significant increase of slow-phase velocity directed towards their brow after 40 sec in the inverted versus erect position. Pitch head rotation had little effect on subsequent nystagmus, except for transient reversal in one subject. The sustained changes of vertical eye drifts induced by 180 deg change of head position suggest that otolithic factors may contribute to vertical nystagmus in normals. The subjects were retested after wearing a nicotine patch for 2 hours. In three subjects, nicotine induced brow-beating nystagmus; adopting a head-hanging position increased this nystagmus in two subjects. In a third session, subjects were tested after wearing a scopolamine patch for 2 hours; results were generally similar to the control condition. We conclude that normal subjects may show chin-beating (“downbeating”) nystagmus in a head-hanging position in darkness, reflecting a normal, physiological change in otolithic inputs brought about by the head orientation.


2006 ◽  
Vol 96 (6) ◽  
pp. 3349-3361 ◽  
Author(s):  
Yongqing Xiang ◽  
Sergei B. Yakushin ◽  
Bernard Cohen ◽  
Theodore Raphan

A neural network model was developed to explain the gravity-dependent properties of gain adaptation of the angular vestibuloocular reflex (aVOR). Gain changes are maximal at the head orientation where the gain is adapted and decrease as the head is tilted away from that position and can be described by the sum of gravity-independent and gravity-dependent components. The adaptation process was modeled by modifying the weights and bias values of a three-dimensional physiologically based neural network of canal–otolith-convergent neurons that drive the aVOR. Model parameters were trained using experimental vertical aVOR gain values. The learning rule aimed to reduce the error between eye velocities obtained from experimental gain values and model output in the position of adaptation. Although the model was trained only at specific head positions, the model predicted the experimental data at all head positions in three dimensions. Altering the relative learning rates of the weights and bias improved the model-data fits. Model predictions in three dimensions compared favorably with those of a double-sinusoid function, which is a fit that minimized the mean square error at every head position and served as the standard by which we compared the model predictions. The model supports the hypothesis that gravity-dependent adaptation of the aVOR is realized in three dimensions by a direct otolith input to canal–otolith neurons, whose canal sensitivities are adapted by the visual-vestibular mismatch. The adaptation is tuned by how the weights from otolith input to the canal–otolith-convergent neurons are adapted for a given head orientation.


2019 ◽  
Vol 56 (9) ◽  
pp. 1164-1170 ◽  
Author(s):  
Diana S. Jodeh ◽  
S. Alex Rottgers

Background: Anthropometry is a well-established means of measuring facial morphology. Although reliable, direct anthropometry can be time-consuming and not conducive to a busy clinical practice. The Vectra H1 handheld stereophotogrammetric system requires 3 stereophotographs taken from different perspectives to generate a three-dimensional (3D) surface. The time needed to take the 3 stereophotographs can increase the possibility of involuntary movements, precluding its use to assess young patients. To overcome this limitation, we evaluated if accurate linear facial measurements can be obtained from a single stereophotograph and compare these to the measurements taken by direct anthropometry. Methods: Twenty pediatric patients, aged 0 to 10 years, who were undergoing minor surgical procedures at Johns Hopkins All Children’s Hospital were recruited. Fourteen linear facial distances were obtained from each participant using direct anthropometry under general anesthesia. These same distances were measured using Mirror 3D analysis. Intraclass correlation was used to determine intrarater reliability on duplicate 3D images. Results: Correlation coefficients between 3D imaging in frontal view and direct anthropometric measurements were excellent for 13 measures taken, ranging from 0.8 (subnasale to columella and subnasale to stomion superius) to 0.98 (nasion to subnasale and subnasale to labiale superius). Correlation coefficients between submental view and direct anthropometric measurements were excellent for 13 measures as well, ranging from 0.77 (subnasale to columella) to 0.98 (nasion to subnasale). Conclusions: Linear anthropometric measurements taken from 3D surfaces generated from a single stereophotograph correlate closely with direct anthropometric measures. This improves workflow and applicability of anthropometric studies to our youngest patients.


2011 ◽  
Vol 98 (2) ◽  
pp. 175-180 ◽  
Author(s):  
Áshildur Logadóttir ◽  
Stine Korreman ◽  
Peter Meidahl Petersen

Perception ◽  
1987 ◽  
Vol 16 (1) ◽  
pp. 29-39 ◽  
Author(s):  
Celia B Fisher ◽  
Maria P Fracasso

Adults judge that patterns symmetrical about the vertical axis are more similar to standard patterns symmetrical about both major orthogonal axes than are patterns which are symmetrical only about the horizontal axis (the Goldmeier effect). Thus, symmetry about the vertical axis is more salient for adults than symmetry about the horizontal axis. Two experiments are reported in which subjects from three age groups (preschool, 8 years old, and adult) were given Goldmeier problems under different conditions. In experiment 1 three head-tilt conditions were used (0°, 45°, 90°); in experiment 2 there were four conditions defined by head orientation (0°, 90°) and phenomenal instructions (top of figure at 0° or at 90°). In both experiments, increasing head tilt from 0° decreased the consistency with which the environmentally vertical pattern was chosen. Noncorrespondence between the three spatial frameworks (environmental, retinal, and phenomenal) failed to produce biases in favor of either retinal-egocentric or phenomenal systems. For rotated adult subjects in experiment 2, 0° phenomenal instructions strengthened an environmental bias, and 90° phenomenal instructions shifted responses toward a retinal bias. These findings provide strong refutation of explanations for symmetry perception that are based solely upon the anatomical symmetry of the visual system. The data also fail to support arguments for environmental or phenomenal frameworks as singular influences. The results are best explained in terms of failure of constancy mechanisms to coordinate environmental and retinal information as a function of degree of head rotation and stimulus complexity.


2018 ◽  
Vol 15 (1) ◽  
pp. 6099-6115
Author(s):  
Saad A Alkahtania ◽  
Ashraf M Mahmoud ◽  
Samer S. Abu Al-Rubb

Novel analytical study was performed in order to develop and validate new high-throughput microwell-based spectrophotometric assays for determination of omeprazole (OMZ) in its pharmaceutical formulations. The proposed assays were based on the charge-transfer (CT) reaction of OMZ with 2,3-dichloronaphthoquinone (DCNQ) and 2,3,5,6-tetrabromo-1,4-benzo-quinone (BROM). In the present study, the CT reactions was carried out in microwell plates as reaction vessels in order to increase the automation of the assays and the efficiency of its use in quality control laboratories (QCLs). All factors affecting the CT reactions were carefully studied, and the conditions were optimized. Kinetics and stoichiometry of the CT reactions were investigated, and the mechanism was postulated. Activation energy of the CT reactions was determined and found to be 13.87 and 16.27 Kcal mol−1 for the reaction of OMZ with DCNQ and BROM, respectively. The initial rate and fixed time methods were applied for generating the calibration graphs for determination of OMZ concentrations. Under the optimum conditions, the linear range was 0.145 – 1.45 x 10-4 and 1.45 – 7.25 x 10-4 M with LOD of 0.6 and 6.0 microgram ml-1 for DCNQ and BROM, respectively. Analytical performance of the proposed methods, in terms of accuracy and precision, was statistically validated and the results were satisfactory; RSD was <2.8% for both repeatability and reproducibility. The proposed methods were successfully applied to the analysis of OMZ in its dosage forms and the recovery results (98.64 – 100.6 ± 0.25 -2.74 %) were comparable with those of the reported method. The developed method may provide a safer and economic tool for the analysis of OMZ in QCLs.


Sign in / Sign up

Export Citation Format

Share Document