On a method of calculating the event error probability of convolutional codes with maximum likelihood decoding (Corresp.)

1979 ◽  
Vol 25 (6) ◽  
pp. 737-743 ◽  
Author(s):  
J. Schalkwijk ◽  
K. Post ◽  
J. Aarts
Quantum ◽  
2020 ◽  
Vol 4 ◽  
pp. 304
Author(s):  
Leonid P. Pryadko

Error probability distribution associated with a given Clifford measurement circuit is described exactly in terms of the circuit error-equivalence group, or the circuit subsystem code previously introduced by Bacon, Flammia, Harrow, and Shi. This gives a prescription for maximum-likelihood decoding with a given measurement circuit. Marginal distributions for subsets of circuit errors are also analyzed; these generate a family of related asymmetric LDPC codes of varying degeneracy. More generally, such a family is associated with any quantum code. Implications for decoding highly-degenerate quantum codes are discussed.


2017 ◽  
Vol 09 (01) ◽  
pp. 1750012
Author(s):  
Lin-Zhi Shen ◽  
Fang-Wei Fu

The [Formula: see text]-incorrigible set distributions of binary linear codes over the erasure channels can be used to determine the decoding error probability of a linear code under maximum likelihood decoding and [Formula: see text]-list decoding. In this short paper, we give the [Formula: see text]-incorrigible set distributions of some linear codes by the finite geometry theory.


Sign in / Sign up

Export Citation Format

Share Document