A Self-Adaptive Parameter Selection Trajectory Prediction Approach via Hidden Markov Models

2015 ◽  
Vol 16 (1) ◽  
pp. 284-296 ◽  
Author(s):  
Shaojie Qiao ◽  
Dayong Shen ◽  
Xiaoteng Wang ◽  
Nan Han ◽  
William Zhu
2004 ◽  
Vol 25 (2) ◽  
pp. 197-210 ◽  
Author(s):  
Jie Li ◽  
Jiaxin Wang ◽  
Yannan Zhao ◽  
Zehong Yang

2021 ◽  
Vol 11 (16) ◽  
pp. 7685
Author(s):  
Alexandre Martins ◽  
Inácio Fonseca ◽  
José Torres Farinha ◽  
João Reis ◽  
António J. Marques Cardoso

The availability maximization is a goal for any organization because the equipment downtime implies high non-production costs and, additionally, the abnormal stopping and restarting usually imply loss of product’s quality. In this way, a method for predicting the equipment’s health state is vital to maintain the production flow as well as to plan maintenance intervention strategies. This paper presents a maintenance prediction approach based on sensing data managed by Hidden Markov Models (HMM). To do so, a diagnosis of drying presses in a pulp industry is used as case study, which is done based on data collected every minute for three years and ten months. This paper presents an approach to manage a multivariate analysis, in this case merging the values of sensors, and optimizing the observable states to insert into a HMM model, which permits to identify three hidden states that characterize the equipment’s health state: “Proper Function”, “Alert state”, and “Equipment Failure”. The research described in this paper demonstrates how an equipment health diagnosis can be made using the HMM, through the collection of observations from various sensors, without information of machine failures occurrences. The approach developed demonstrated to be robust, even the complexity of the system, having the potential to be generalized to any other type of equipment.


2022 ◽  
Vol 2022 ◽  
pp. 1-13
Author(s):  
Peng Wang ◽  
Jing Yang ◽  
Jianpei Zhang

Unlike outdoor trajectory prediction that has been studied many years, predicting the movement of a large number of users in indoor space like shopping mall has just been a hot and challenging issue due to the ubiquitous emerging of mobile devices and free Wi-Fi services in shopping centers in recent years. Aimed at solving the indoor trajectory prediction problem, in this paper, a hybrid method based on Hidden Markov approach is proposed. The proposed approach clusters Wi-Fi access points according to their similarities first; then, a frequent subtrajectory based HMM which captures the moving patterns of users has been investigated. In addition, we assume that a customer’s visiting history has certain patterns; thus, we integrate trajectory prediction with shop category prediction into a unified framework which further improves the predicting ability. Comprehensive performance evaluation using a large-scale real dataset collected between September 2012 and October 2013 from over 120,000 anonymized, opt-in consumers in a large shopping center in Sydney was conducted; the experimental results show that the proposed method outperforms the traditional HMM and perform well enough to be usable in practice.


Author(s):  
Chiraz Trabelsi ◽  
Bilel Moulahi ◽  
Sadok Ben Yahia

Recently, social bookmarking systems have received surging attention in academic and industrial communities. In fact, social bookmarking systems share with the Semantic Web vision the idea of facilitating the collaborative organization and sharing of knowledge on the web. The reason for the apparent success of the upcoming tools for resource sharing (social bookmarking systems, photo sharing systems, etc.) lies mainly in the fact that no specific skills are needed for publishing and editing, and an immediate benefit is yielded to each individual user, e.g., organizing one’s bookmarks in a browser-independent, persistent fashion, without too much overhead. As these systems grow larger, however, the users address the need of enhanced search facilities. Today, full-text search is supported, but the results are usually simply listed decreasingly by their upload date. The challenging research issue is, therefore, the development of a suitable prediction framework to support users in effectively retrieving the resources matching their real search intents. The primary focus of this chapter is to propose a new, context aware tag query prediction approach. Specifically, the authors adopted Hidden Markov Models and formal concept analysis to predict users’ search intentions based on a real folksonomy. Carried out experiments emphasize the relevance of the proposal and open many issues.


Sign in / Sign up

Export Citation Format

Share Document