Robust Lane Detection and Tracking for Real-Time Applications

2018 ◽  
Vol 19 (12) ◽  
pp. 4043-4048 ◽  
Author(s):  
Chanho Lee ◽  
Ji-Hyun Moon
Author(s):  
Mohamed Hammami ◽  
Nadra Ben Romdhane ◽  
Hanene Ben-Abdallah

Lane detection and tracking are very crucial treatments in lane departure warning systems as they help the vehicle-mounted system to keep its lane. In this context, the authors’ work aims to develop vision-based lane detection and tracking method to detect and track lane limits in highways and main roads. The authors’ contribution focuses on the detection step. By exploiting the fact that, in an image, the road can be formed by linear and curvilinear portions, the authors propose two types of appropriate treatments to detect the lane limits. The authors’ method offers high precision rates independently of the painted lane marking’s characteristics, of the time of acquisition and in different weather conditions. Besides the challenges it overcomes, the authors’ method has the advantage of operating with a timing complexity that is reasonable for real-time applications. As shown experimentally, compared to three leading methods from the literature, the authors’ method has a higher efficiency.


2019 ◽  
Author(s):  
Shun Yang ◽  
Jian Wu ◽  
Yanhu Shan ◽  
Yinan Yu ◽  
Sumin Zhang

Author(s):  
Fuat Cos¸kun ◽  
O¨zgu¨r Tuncer ◽  
Elif Karslıgil ◽  
Levent Gu¨venc¸

Lane keeping assistance systems help the driver in following the lane centerline. While lane keeping assistance systems are available in some mass production vehicles, they have not found widespread use and are not as common as ESP or ACC at the moment. Lane keeping assistance systems still need further development. Previously available systems have to be continuously adapted to newer vehicle models and fully tested after this adaptation. An image processing algorithm for lane detection and tracking, a lane keeping assistance controller design and a real time hardware-in-the-loop (HiL) simulator developed for testing the designed lane keeping assistance system are therefore presented in this paper. The high fidelity, high order, realistic and nonlinear vehicle model in Carmaker HiL runs as software in a real time simulation on a dSpace compact simulator with the DS1005 and DS2210 boards. A PC is used for processing video frames coming from an in-vehicle camera pointed towards the road ahead. Lane detection and tracking computations including fitting of composite Bezier curves to curved lanes are carried out on this PC. In the present setup, the camera used is a virtual camera attached to the virtual vehicle in Carmaker and provides video frames from the Carmaker animation screen. A dSpace microautobox is available for obtaining the lane data from the PC and the Carmaker vehicle data from the dSpace compact simulator and calculating the required steering actions and sending them to the Carmaker vehicle model. The lane keeping controller is designed in the Matlab toolbox COMES using parameter space techniques. The motivation behind this approach is to develop the lane keeping assistance system as much as possible in a laboratory hardware-in-the-loop setting before time consuming, expensive and potentially dangerous road testing. Lane detection, tracking and curved lane fit results, hardware-in-the-loop simulation results of the lane keeping controller with the image processing system are are used to demonstrate the effectiveness of the proposed method.


Sign in / Sign up

Export Citation Format

Share Document