Comparative Analysis of End Effect in Partitioned Stator Flux Reversal Machines Having Surface-Mounted and Consequent Pole Permanent Magnets

2016 ◽  
Vol 52 (7) ◽  
pp. 1-4 ◽  
Author(s):  
Z. Z. Wu ◽  
Z. Q. Zhu
Energies ◽  
2019 ◽  
Vol 12 (13) ◽  
pp. 2489
Author(s):  
M. Korkosz ◽  
P. Bogusz ◽  
J. Prokop ◽  
B. Pakla ◽  
G. Podskarbi

This article presents the results of a comparative analysis of two electronically commutated brushless direct current machines intended for fault-tolerant drives. Two machines designed by the authors were compared: a 12/14 dual-channel brushless direct current motor (DCBLDCM) with permanent magnets and a 12/8 dual-channel switched reluctance motor (DCSRM). Information is provided here on the winding configuration, the parameters, and the power converters of both machines. We developed mathematical models of the DCBLDCM and DCSRM which accounted for the nonlinearity of their magnetization characteristics in dual-channel operation (DCO) and single-channel operation (SCO) modes. The static torque characteristics and flux characteristics of both machines were compared for operation in DCO and SCO modes. The waveforms of the current and the electromagnetic torque are presented for DCO and SCO operating conditions. For DCO mode, an analysis of the behavior of both machines under fault conditions (i.e., asymmetrical control, shorted coil, and open phase) was performed. The two designs were compared, and their strengths and weaknesses were indicated.


2018 ◽  
Vol 882 ◽  
pp. 162-173
Author(s):  
Tobias Gerlach ◽  
Rolf Vollmer ◽  
Andreas Kremser ◽  
Dieter Gerling

The partitioned stator flux reversal machine (PS-FRPM) is a novel stator PM machine topology, which exhibits a higher torque capability than its single stator counterpart and the conventional permanent magnet synchronous machine (PMSM). The PS-FRPM consists of two stators, one which carries the armature winding, and one which is equipped with surface mounted permanent magnets. The rotor is sandwiched between the two stators. The separation of the stator allows a better utilization of the machine volume which results in a higher torque density. Furthermore, because the magnets are placed on a stationary component, they can be cooled effectively. Consequently, critical rare-earth materials can be saved.The structure of the PS-FRPM is very similar to that of magnetic gears. In this paper the torque production of a PS-FRPM is described by means of the magnetic gearing effect. First the magnetic gearing effect is introduced and then the corresponding analytics is transferred to the PS-FRPM. Based on Maxwell's stress tensor, the torque contributions of the individual space harmonics are determined. In contrast to conventional machines, the torque in PS-FRPM is produced by several space harmonics in both air gaps.


Sign in / Sign up

Export Citation Format

Share Document