Network Transparency for Better Internet Security

2019 ◽  
Vol 27 (5) ◽  
pp. 2028-2042
Author(s):  
Christos Pappas ◽  
Taeho Lee ◽  
Raphael M. Reischuk ◽  
Pawel Szalachowski ◽  
Adrian Perrig
Author(s):  
P. Jeyadurga ◽  
S. Ebenezer Juliet ◽  
I. Joshua Selwyn ◽  
P. Sivanisha

The Internet of things (IoT) is one of the emerging technologies that brought revolution in many application domains such as smart cities, smart retails, healthcare monitoring and so on. As the physical objects are connected via internet, security risk may arise. This paper analyses the existing technologies and protocols that are designed by different authors to ensure the secure communication over internet. It additionally focuses on the advancement in healthcare systems while deploying IoT services.


2020 ◽  
Vol 62 (5-6) ◽  
pp. 287-293
Author(s):  
Felix Günther

AbstractSecure connections are at the heart of today’s Internet infrastructure, protecting the confidentiality, authenticity, and integrity of communication. Achieving these security goals is the responsibility of cryptographic schemes, more specifically two main building blocks of secure connections. First, a key exchange protocol is run to establish a shared secret key between two parties over a, potentially, insecure connection. Then, a secure channel protocol uses that shared key to securely transport the actual data to be exchanged. While security notions for classical designs of these components are well-established, recently developed and standardized major Internet security protocols like Google’s QUIC protocol and the Transport Layer Security (TLS) protocol version 1.3 introduce novel features for which supporting security theory is lacking.In my dissertation [20], which this article summarizes, I studied these novel and advanced design aspects, introducing enhanced security models and analyzing the security of deployed protocols. For key exchange protocols, my thesis introduces a new model for multi-stage key exchange to capture that recent designs for secure connections establish several cryptographic keys for various purposes and with differing levels of security. It further introduces a formalism for key confirmation, reflecting a long-established practical design criteria which however was lacking a comprehensive formal treatment so far. For secure channels, my thesis captures the cryptographic subtleties of streaming data transmission through a revised security model and approaches novel concepts to frequently update key material for enhanced security through a multi-key channel notion. These models are then applied to study (and confirm) the security of the QUIC and TLS 1.3 protocol designs.


Author(s):  
Md Equebal Hussain ◽  
Mohammad Rashid Hussain

security is one of the most important concern on cloud computing therefore institutions are hesitating to host their data over cloud. Not all data can be afforded to move on the cloud (example accounts data). The main purpose of moving data over cloud is to reduce cost (infrastructure and maintenance), faster performance, easy upgrade, storage capacity but at the same time security is major concern because cloud is not private but maintained by third party over the internet, security issues like privacy, confidentiality, authorization (what you are allowed to do), authentication (who you are) and accounting (what you actually do) will be encountered. Variety of encryption algorithms required for higher level of security. In this paper we try to provide solution for better security by proposing a combined method of key exchange algorithm with encryption technique. Data stored in cloud can be protected from hackers using proposed solution because even if transmitted key is hacked of no use without user’s private key.


2010 ◽  
Vol 3 (2-3) ◽  
pp. 185-206 ◽  
Author(s):  
Andreas Berger ◽  
Ivan Gojmerac ◽  
Oliver Jung

2015 ◽  
Vol 7 (4) ◽  
pp. 257-275 ◽  
Author(s):  
Kamran Zaidi ◽  
Muttukrishnan Rajarajan

Sign in / Sign up

Export Citation Format

Share Document