Implementation of a new Monte Carlo-GEANT4 Simulation tool for the development of a proton therapy beam line and verification of the related dose distributions

2005 ◽  
Vol 52 (1) ◽  
pp. 262-265 ◽  
Author(s):  
G.A.P. Cirrone ◽  
G. Cuttone ◽  
S. Guatelli ◽  
S. Lo Nigro ◽  
B. Mascialino ◽  
...  
2020 ◽  
Vol 93 (1107) ◽  
pp. 20190578 ◽  
Author(s):  
Consuelo Guardiola ◽  
Ludovic De Marzi ◽  
Yolanda Prezado

Objectives: Proton minibeam radiation therapy (pMBRT) is a novel therapeutic strategy that combines the benefits of proton therapy with the remarkable normal tissue preservation observed with the use of submillimetric spatially fractionated beams. This promising technique has been implemented at the Institut Curie-Proton therapy centre (ICPO) using a first prototype of a multislit collimator. The purpose of this work was to develop a Monte Carlo-based dose calculation engine to reliably guide preclinical studies at ICPO. Methods: The whole “Y1”-passive beamline at the ICPO, including pMBRT implementation, was modelled using the Monte Carlo GATE v. 7.0 code. A clinically relevant proton energy (100 MeV) was used as starting point. Minibeam generation by means of the brass collimator used in the first experiments was modelled. A virtual source was modelled at the exit of the beamline nozzle and outcomes were compared with dosimetric measurements performed with EBT3 gafchromic films and a diamond detector in water. Dose distributions were recorded in a water phantom and in rat CT images (7-week-old male Fischer rats). Results: The dose calculation engine was benchmarked against experimental data and was then used to assess dose distributions in CT images of a rat, resulting from different irradiation configurations used in several experiments. It reduced computational time by an order of magnitude. This allows us to speed up simulations for in vivo trials, where we obtained peak-to-valley dose ratios of 1.20 ± 0.05 and 6.1 ± 0.2 for proton minibeam irradiations targeting the tumour and crossing the rat head. Tumour eradication was observed in the 67 and 22% of the animals treated respectively. Conclusion: A Monte Carlo dose calculation engine for pMBRT implementation with mechanical collimation has been developed. This tool can be used to guide and interpret the results of in vivo trials. Advances in knowledge: This is the first Monte Carlo dose engine for pMBRT that is being used to guide preclinical trials in a clinical proton therapy centre.


2014 ◽  
Vol 15 (4) ◽  
pp. 2-10 ◽  
Author(s):  
Chris Beltran ◽  
Yingcui Jia ◽  
Roelf Slopsema ◽  
Daniel Yeung ◽  
Zuofeng Li

2005 ◽  
Vol 52 (4) ◽  
pp. 896-901 ◽  
Author(s):  
T. Aso ◽  
A. Kimura ◽  
S. Tanaka ◽  
H. Yoshida ◽  
N. Kanematsu ◽  
...  

Nukleonika ◽  
2014 ◽  
Vol 59 (2) ◽  
pp. 61-66 ◽  
Author(s):  
Małgorzata Grządziel ◽  
Adam Konefał ◽  
Wiktor Zipper ◽  
Robert Pietrzak ◽  
Ewelina Bzymek

Abstract Verification of calculations of the depth-dose distributions in water, using GEANT4 (version of 4.9.3) and MCNPX (version of 2.7.0) Monte Carlo codes, was performed for the scatterer-phantom system used in the dosimetry measurements in the proton therapy of eye tumours. The simulated primary proton beam had the energy spectra distributed according to the Gauss distribution with the cut at energy greater than that related to the maximum of the spectrum. The energy spectra of the primary protons were chosen to get the possibly best agreement between the measured relative depth-dose distributions along the central-axis of the proton beam in a water phantom and that derived from the Monte Carlo calculations separately for the both tested codes. The local depth-dose differences between results from the calculations and the measurements were mostly less than 5% (the mean value of 2.1% and 3.6% for the MCNPX and GEANT4 calculations). In the case of the MCNPX calculations, the best fit to the experimental data was obtained for the spectrum with maximum at 60.8 MeV (more probable energy), FWHM of the spectrum of 0.4 MeV and the energy cut at 60.85 MeV whereas in the GEANT4 calculations more probable energy was 60.5 MeV, FWHM of 0.5 MeV, the energy cut at 60.7 MeV. Thus, one can say that the results obtained by means of the both considered Monte Carlo codes are similar but they are not the same. Therefore the agreement between the calculations and the measurements has to be verified before each application of the MCNPX and GEANT4 codes for the determination of the depth-dose curves for the therapeutic protons.


Sign in / Sign up

Export Citation Format

Share Document