32k Channel Readout IC for Single Photon Counting Pixel Detectors with Pitch, Dead Time of 85 ns, Offset Spread and 2% rms Gain Spread

2016 ◽  
Vol 63 (2) ◽  
pp. 1155-1161 ◽  
Author(s):  
P. Grybos ◽  
P. Kmon ◽  
P. Maj ◽  
R. Szczygiel
2022 ◽  
Vol 17 (01) ◽  
pp. C01036
Author(s):  
P. Grybos ◽  
R. Kleczek ◽  
P. Kmon ◽  
A. Krzyzanowska ◽  
P. Otfinowski ◽  
...  

Abstract This paper presents a readout integrated circuit (IC) of pixel architecture called MPIX (Multithreshold PIXels), designed for CdTe pixel detectors used in X-ray imaging applications. The MPIX IC area is 9.6 mm × 20.3 mm and it is designed in a CMOS 130 nm process. The IC core is a matrix of 96 × 192 square-shaped pixels of 100 µm pitch. Each pixel contains a fast analog front-end followed by four independently working discriminators and four 12-bit ripple counters. Such pixel architecture allows photon processing one by one and selecting the X-ray photons according to their energy (X-ray colour imaging). To fit the different range of applications the MPIX IC has 8 possible different gain settings, and it can process the X-ray photons of energy up to 154 keV. The MPIX chip is bump-bonded to the CdTe 1.5 mm thick pixel sensor with a pixel pitch of 100 µm. To deal with the charge sharing effect coming from a thick semiconductor pixel sensor, multithreshold pattern recognition algorithm is implemented in the readout IC. The implemented algorithm operates both in the analog domain (to recover the total charge spread between neighboring pixels, when a single X-ray photon hits the border of the pixel) and in the digital domain (to allocate a hit position to a single pixel).


2004 ◽  
Vol 51 (4) ◽  
pp. 1717-1723 ◽  
Author(s):  
M. Locker ◽  
P. Fischer ◽  
S. Krimmel ◽  
H. Kruger ◽  
M. Lindner ◽  
...  

Electronics ◽  
2020 ◽  
Vol 9 (7) ◽  
pp. 1131
Author(s):  
Ming Chen ◽  
Chenghao Li ◽  
Alan P. Morrison ◽  
Shijie Deng ◽  
Chuanxin Teng ◽  
...  

A compact single-photon counting module that can accurately control the bias voltage and hold-off time is developed in this work. The module is a microcontroller-based system which mainly consists of a microcontroller, a programmable negative voltage generator, a silicon-based single-photon avalanche diode, and an integrated active quench and reset circuit. The module is 3.8 cm × 3.6 cm × 2 cm in size and can communicate with the end user and be powered through a USB cable (5 V). In this module, the bias voltage of the single-photon avalanche diode (SPAD) is precisely controllable from −14 V ~ −38 V and the hold-off time (consequently the dead time) of the SPAD can be adjusted from a few nanoseconds to around 1.6 μs with a setting resolution of ∼6.5 ns. Experimental results show that the module achieves a minimum dead time of around 28.5 ns, giving a saturation counting rate of around 35 Mcounts/s. Results also show that at a controlled reverse bias voltage of 26.8 V, the dark count rate measured is about 300 counts/s and the timing jitter measured is about 158 ps. Photodetection probability measurements show that the module is suited for detection of visible light from 450 nm to 800 nm with a 40% peak photon detection efficiency achieved at around 600 nm.


2016 ◽  
Vol 72 (9) ◽  
pp. 1036-1048 ◽  
Author(s):  
Arnau Casanas ◽  
Rangana Warshamanage ◽  
Aaron D. Finke ◽  
Ezequiel Panepucci ◽  
Vincent Olieric ◽  
...  

The development of single-photon-counting detectors, such as the PILATUS, has been a major recent breakthrough in macromolecular crystallography, enabling noise-free detection and novel data-acquisition modes. The new EIGER detector features a pixel size of 75 × 75 µm, frame rates of up to 3000 Hz and a dead time as low as 3.8 µs. An EIGER 1M and EIGER 16M were tested on Swiss Light Source beamlines X10SA and X06SA for their application in macromolecular crystallography. The combination of fast frame rates and a very short dead time allows high-quality data acquisition in a shorter time. The ultrafine φ-slicing data-collection method is introduced and validated and its application in finding the optimal rotation angle, a suitable rotation speed and a sufficient X-ray dose are presented. An improvement of the data quality up to slicing at one tenth of the mosaicity has been observed, which is much finer than expected based on previous findings. The influence of key data-collection parameters on data quality is discussed.


2014 ◽  
Vol 70 (a1) ◽  
pp. C680-C680
Author(s):  
Bernd Schmitt ◽  
Anna Bergamaschi ◽  
Sebastian Cartier ◽  
Roberto Dinapoli ◽  
Dominic Greiffenberg ◽  
...  

The detector group of the Swiss Light Source (SLS) at the Paul Scherrer Institut (PSI) has a long history of x-ray detector developments for synchrotrons. Initially these detectors were all single photon counting systems. In the last years the focus at PSI was moving towards charge integrating systems mainly driven by the detector needs for the upcoming XFELs. Charge integrating systems however also solve some of the problems of single photon counting systems. Charge integrating systems have an almost infinite linear count rate capability, allow systems with smallest pixel sizes and for low photon energies. In this presentation we give an overview of the detector developments at PSI and focus on Jungfrau, Mönch and Eiger. Eiger is a single photon counting system specifically developed for high frame rates. It has a 75 micron pixel size and can run at frame rates up to 24 kHz. A 9M Eiger detector will be installed in a few months at the cSAXS beamline of the SLS. Jungfrau uses the same sensor as Eiger (about 4cm x 8 cm with a pixel size of 75 microns). It has a charge integrating architecture with dynamic gain switching to achieve a dynamic range of 10^4 photons (at 12 keV). With a frame rate of up to 2 kHz Jungfrau is currently being developed for applications at both XFELs and synchrotrons. 16M Jungfrau detectors are foreseen at the SwissFEL. Mönch is currently a research project. A first prototype with 160x160 pixels and a pixel size of 25 microns was designed and is currently characterised. It offers the smallest pixel size of current hybrid pixel detectors and also has a very low noise allowing hybrid pixel detectors to be used down to about 400eV. We present measurement results for Jungfrau, Mönch and Eiger and give an outlook on future possible systems.


Sign in / Sign up

Export Citation Format

Share Document