scholarly journals Design and Implementation of a Compact Single-Photon Counting Module

Electronics ◽  
2020 ◽  
Vol 9 (7) ◽  
pp. 1131
Author(s):  
Ming Chen ◽  
Chenghao Li ◽  
Alan P. Morrison ◽  
Shijie Deng ◽  
Chuanxin Teng ◽  
...  

A compact single-photon counting module that can accurately control the bias voltage and hold-off time is developed in this work. The module is a microcontroller-based system which mainly consists of a microcontroller, a programmable negative voltage generator, a silicon-based single-photon avalanche diode, and an integrated active quench and reset circuit. The module is 3.8 cm × 3.6 cm × 2 cm in size and can communicate with the end user and be powered through a USB cable (5 V). In this module, the bias voltage of the single-photon avalanche diode (SPAD) is precisely controllable from −14 V ~ −38 V and the hold-off time (consequently the dead time) of the SPAD can be adjusted from a few nanoseconds to around 1.6 μs with a setting resolution of ∼6.5 ns. Experimental results show that the module achieves a minimum dead time of around 28.5 ns, giving a saturation counting rate of around 35 Mcounts/s. Results also show that at a controlled reverse bias voltage of 26.8 V, the dark count rate measured is about 300 counts/s and the timing jitter measured is about 158 ps. Photodetection probability measurements show that the module is suited for detection of visible light from 450 nm to 800 nm with a 40% peak photon detection efficiency achieved at around 600 nm.

2008 ◽  
Vol 600-603 ◽  
pp. 1203-1206 ◽  
Author(s):  
Jun Hu ◽  
Xiao Bin Xin ◽  
Petre Alexandrov ◽  
Jian Hui Zhao ◽  
Brenda L. VanMil ◽  
...  

This paper reports a 4H-SiC single photo avalanche diode (SPAD) operating at the solar blind wavelength of 280 nm. The SPAD has an avalanche breakdown voltage of 114V. At 90% and 95% of the breakdown voltage, the SPAD shows a low dark current of 57.2fA and 159fA, respectively. The quantum efficiency of 29.8% at 280nm and <0.007% at 400nm indicates a high UV-to-visible rejection ratio of >4300. Single photon counting measurement at 280nm shows that a single photon detection efficiency of 2.83% with a low dark count rate of 22kHz is achieved at the avalanche breakdown voltage of 116.8V.


2021 ◽  
Vol 16 (4) ◽  
pp. 546-551
Author(s):  
Mei-Ling Zeng ◽  
Yang Wang ◽  
Xiang-Liang Jin ◽  
Yan Peng ◽  
Jun Luo

Single-photon avalanche diodes (SPADs) can detect extremely weak optical signals and are mostly used in single-photon imaging, quantum communication, medical detection, and other fields. In this paper, a low dark count rate (DCR) single-photon avalanche diode device is designed based on the 180 nm standard BCD process. The device has a good response in the 450~750 nm spectral range. The active area of the device adopts a P+/N-Well structure with a diameter of 20 µm. The low-doped N-Well increases the thickness of the depletion region and can effectively improve the detection sensitivity; the P-Well acts as a guard ring to prevent premature breakdown of the PN junction edge; the isolation effect of the deep N-Well reduces the noise coupling of the substrate. Use the TCAD simulation tool to verify the SPAD’s basic principles. The experimental test results show that the avalanche breakdown voltage of the device is 11.7 V. The dark count rate is only 123 Hz when the over-bias voltage is 1 V, and the peak photon detection efficiency (PDE) reaches 37.5% at the wavelength of 500 nm under the 0.5 V over-bias voltage. PDE exceeds 30% in the range of 460~640 nm spectral range, which has a good response in the blue band. The SPAD device provides certain design ideas for the research of fluorescence detectors.


2017 ◽  
Vol 31 (17) ◽  
pp. 1750193 ◽  
Author(s):  
Wei Wang ◽  
Xiaoyuan Bao ◽  
Li Chen ◽  
Ting Chen ◽  
Guanyu Wang ◽  
...  

This paper proposed a single photon avalanche diodes (SPADs) designed with 0.18 [Formula: see text] standard CMOS process. One of the major challenges in CMOS SPADs is how to raise the low photon detection efficiency (PDE). In this paper, the device structure and process parameters of the CMOS SPAD are optimized so as to improve PDE properties which have been investigated in detail. The CMOS SPADs are designed in p+/n-well/deep n-well (DNW) structure with the p-sub and the p-well guard ring (GR). The simulation results show that with the p-well GR, the quantum efficiency (QE) is about 80% with the breakdown voltage of 12.7 V, the unit responsivity is as high as 0.38 A/W and the PDE of 51% and 53% is obtained when the excess bias is at 1 V and 2 V, respectively. The dark count rate (DCR) is 6.2 kHz when bias voltage is 14 V. With the p-sub GR, the breakdown voltage is 13 V, the unit responsivity is up to 0.26 A/W, the QE is 58%, the PDE is 33% and 37% at excess bias of 1 V and 2 V, respectively. The DCR is 3.4 kHz at reverse bias voltage of 14 V.


2011 ◽  
Vol 679-680 ◽  
pp. 551-554
Author(s):  
D. Kurt Gaskill ◽  
Jun Hu ◽  
X. Xin ◽  
Jian Hui Zhao ◽  
Brenda L. VanMil ◽  
...  

The effects of proton irradiation on uv 4H-SiC single photon avalanche photodiodes (SPADs) are reported. The SPADs, grown by chemical vapor deposition, were designed for uv operation with dark count rates (DCR) of about 30 kHz and single photon detection efficiency (SPDE) of 4.89%. The SPADs were irradiated with 2 MeV protons to a fluence of 1012 cm-2. After irradiation, the I-V characteristics show forward voltage (<1.9 V) generation-recombination currents 2 to 3 times higher than before irradiation. Single photon counting measurements imply generation-recombination centers created in the band gap after irradiation. For threshold voltage ranging from 23 to 26 mV, the 4H-SiC SPAD showed low DCR (<54 kHz) and high SPDE (>1%) after irradiation. The SPADs demonstrated proton radiation tolerance for geosynchronous space applications.


2016 ◽  
Vol 72 (9) ◽  
pp. 1036-1048 ◽  
Author(s):  
Arnau Casanas ◽  
Rangana Warshamanage ◽  
Aaron D. Finke ◽  
Ezequiel Panepucci ◽  
Vincent Olieric ◽  
...  

The development of single-photon-counting detectors, such as the PILATUS, has been a major recent breakthrough in macromolecular crystallography, enabling noise-free detection and novel data-acquisition modes. The new EIGER detector features a pixel size of 75 × 75 µm, frame rates of up to 3000 Hz and a dead time as low as 3.8 µs. An EIGER 1M and EIGER 16M were tested on Swiss Light Source beamlines X10SA and X06SA for their application in macromolecular crystallography. The combination of fast frame rates and a very short dead time allows high-quality data acquisition in a shorter time. The ultrafine φ-slicing data-collection method is introduced and validated and its application in finding the optimal rotation angle, a suitable rotation speed and a sufficient X-ray dose are presented. An improvement of the data quality up to slicing at one tenth of the mosaicity has been observed, which is much finer than expected based on previous findings. The influence of key data-collection parameters on data quality is discussed.


Sensors ◽  
2021 ◽  
Vol 21 (14) ◽  
pp. 4850
Author(s):  
Aurora Maccarone ◽  
Giulia Acconcia ◽  
Ulrich Steinlehner ◽  
Ivan Labanca ◽  
Darryl Newborough ◽  
...  

We present an optical depth imaging system suitable for highly scattering underwater environments. The system used the time-correlated single-photon counting (TCSPC) technique and the time-of-flight approach to obtain depth profiles. The single-photon detection was provided by a linear array of single-photon avalanche diode (SPAD) detectors fabricated in a customized silicon fabrication technology for optimized efficiency, dark count rate, and jitter performance. The bi-static transceiver comprised a pulsed laser diode source with central wavelength 670 nm, a linear array of 16 × 1 Si-SPAD detectors, with a dedicated TCSPC acquisition module. Cylindrical lenses were used to collect the light scattered by the target and image it onto the sensor. These laboratory-based experiments demonstrated single-photon depth imaging at a range of 1.65 m in highly scattering conditions, equivalent up to 8.3 attenuation lengths between the system and the target, using average optical powers of up to 15 mW. The depth and spatial resolution of this sensor were investigated in different scattering conditions.


Sign in / Sign up

Export Citation Format

Share Document