Automatic and Real-Time Identification of Radionuclides in Gamma-Ray Spectra: A New Method Based on Convolutional Neural Network Trained With Synthetic Data Set

2020 ◽  
Vol 67 (4) ◽  
pp. 644-653 ◽  
Author(s):  
G. Daniel ◽  
F. Ceraudo ◽  
O. Limousin ◽  
D. Maier ◽  
A. Meuris
2020 ◽  
Vol 2020 ◽  
pp. 1-6
Author(s):  
Jian-ye Yuan ◽  
Xin-yuan Nan ◽  
Cheng-rong Li ◽  
Le-le Sun

Considering that the garbage classification is urgent, a 23-layer convolutional neural network (CNN) model is designed in this paper, with the emphasis on the real-time garbage classification, to solve the low accuracy of garbage classification and recycling and difficulty in manual recycling. Firstly, the depthwise separable convolution was used to reduce the Params of the model. Then, the attention mechanism was used to improve the accuracy of the garbage classification model. Finally, the model fine-tuning method was used to further improve the performance of the garbage classification model. Besides, we compared the model with classic image classification models including AlexNet, VGG16, and ResNet18 and lightweight classification models including MobileNetV2 and SuffleNetV2 and found that the model GAF_dense has a higher accuracy rate, fewer Params, and FLOPs. To further check the performance of the model, we tested the CIFAR-10 data set and found the accuracy rates of the model (GAF_dense) are 0.018 and 0.03 higher than ResNet18 and SufflenetV2, respectively. In the ImageNet data set, the accuracy rates of the model (GAF_dense) are 0.225 and 0.146 higher than Resnet18 and SufflenetV2, respectively. Therefore, the garbage classification model proposed in this paper is suitable for garbage classification and other classification tasks to protect the ecological environment, which can be applied to classification tasks such as environmental science, children’s education, and environmental protection.


Author(s):  
Pranav Kale ◽  
Mayuresh Panchpor ◽  
Saloni Dingore ◽  
Saloni Gaikwad ◽  
Prof. Dr. Laxmi Bewoor

In today's world, deep learning fields are getting boosted with increasing speed. Lot of innovations and different algorithms are being developed. In field of computer vision, related to autonomous driving sector, traffic signs play an important role to provide real time data of an environment. Different algorithms were developed to classify these Signs. But performance still needs to improve for real time environment. Even the computational power required to train such model is high. In this paper, Convolutional Neural Network model is used to Classify Traffic Sign. The experiments are conducted on a real-world data set with images and videos captured from ordinary car driving as well as on GTSRB dataset [15] available on Kaggle. This proposed model is able to outperform previous models and resulted with accuracy of 99.6% on validation set. This idea has been granted Innovation Patent by Australian IP to Authors of this Research Paper. [24]


Geophysics ◽  
2019 ◽  
Vol 85 (1) ◽  
pp. V33-V43 ◽  
Author(s):  
Min Jun Park ◽  
Mauricio D. Sacchi

Velocity analysis can be a time-consuming task when performed manually. Methods have been proposed to automate the process of velocity analysis, which, however, typically requires significant manual effort. We have developed a convolutional neural network (CNN) to estimate stacking velocities directly from the semblance. Our CNN model uses two images as one input data for training. One is an entire semblance (guide image), and the other is a small patch (target image) extracted from the semblance at a specific time step. Labels for each input data set are the root mean square velocities. We generate the training data set using synthetic data. After training the CNN model with synthetic data, we test the trained model with another synthetic data that were not used in the training step. The results indicate that the model can predict a consistent velocity model. We also noticed that when the input data are extremely different from those used for the training, the CNN model will hardly pick the correct velocities. In this case, we adopt transfer learning to update the trained model (base model) with a small portion of the target data to improve the accuracy of the predicted velocity model. A marine data set from the Gulf of Mexico is used for validating our new model. The updated model performed a reasonable velocity analysis in seconds.


2019 ◽  
Vol 7 (3) ◽  
pp. SE161-SE174 ◽  
Author(s):  
Reetam Biswas ◽  
Mrinal K. Sen ◽  
Vishal Das ◽  
Tapan Mukerji

An inversion algorithm is commonly used to estimate the elastic properties, such as P-wave velocity ([Formula: see text]), S-wave velocity ([Formula: see text]), and density ([Formula: see text]) of the earth’s subsurface. Generally, the seismic inversion problem is solved using one of the traditional optimization algorithms. These algorithms start with a given model and update the model at each iteration, following a physics-based rule. The algorithm is applied at each common depth point (CDP) independently to estimate the elastic parameters. Here, we have developed a technique using the convolutional neural network (CNN) to solve the same problem. We perform two critical steps to take advantage of the generalization capability of CNN and the physics to generate synthetic data for a meaningful representation of the subsurface. First, rather than using CNN as in a classification type of problem, which is the standard approach, we modified the CNN to solve a regression problem to estimate the elastic properties. Second, again unlike the conventional CNN, which is trained by supervised learning with predetermined label (elastic parameter) values, we use the physics of our forward problem to train the weights. There are two parts of the network: The first is the convolution network, which takes the input as seismic data to predict the elastic parameters, which is the desired intermediate result. In the second part of the network, we use wave-propagation physics and we use the output of the CNN to generate the predicted seismic data for comparison with the actual data and calculation of the error. This error between the true and predicted seismograms is then used to calculate gradients, and update the weights in the CNN. After the network is trained, only the first part of the network can be used to estimate elastic properties at remaining CDPs directly. We determine the application of physics-guided CNN on prestack and poststack inversion problems. To explain how the algorithm works, we examine it using a conventional CNN workflow without any physics guidance. We first implement the algorithm on a synthetic data set for prestack and poststack data and then apply it to a real data set from the Cana field. In all the training examples, we use a maximum of 20% of data. Our approach offers a distinct advantage over a conventional machine-learning approach in that we circumvent the need for labeled data sets for training.


2021 ◽  
Vol 40 (11) ◽  
pp. 831-836
Author(s):  
Aina Juell Bugge ◽  
Andreas K. Evensen ◽  
Jan Erik Lie ◽  
Espen H. Nilsen

Some of the key tasks in seismic processing involve suppressing multiples and noise that interfere with primary events. Conventional multiple attenuation on seismic prestack data is time-consuming and subjective. As an alternative, we propose model-driven processing using a convolutional neural network trained on synthetically modeled training data. The crucial part of our approach is to generate appropriate training data. Here, we compute a generic data set with pairs of synthetic gathers with and without multiples. Because we generate the primaries first and then add multiples, we ensure that we have perfect target data without any multiple energy. To compute generic and realistic training data, we include elements of wave propagation physics and implement a randomized flexibility of settings such as the wavelet, frequency content, degree of random noise, and amplitude variation with offset effects with each gather pair. A fully convolutional neural network is trained on the synthetic data in order to learn to suppress the noise and multiples. Evaluations of the approach on benchmark data indicate that our trained network is faster than conventional multiple attenuation because it can be run efficiently on a modern GPU, and it has the potential to better preserve primary amplitudes. Multiple removal with model-driven processing is demonstrated on seismic field data, and the results are compared to conventional multiple attenuation using a commercial Radon algorithm. The model-driven approach performs well when applied to real common-depth point gathers, and it successfully removes multiples, even where the multiples interfere with the primary signals on the near offsets.


Author(s):  
P.L. Nikolaev

This article deals with method of binary classification of images with small text on them Classification is based on the fact that the text can have 2 directions – it can be positioned horizontally and read from left to right or it can be turned 180 degrees so the image must be rotated to read the sign. This type of text can be found on the covers of a variety of books, so in case of recognizing the covers, it is necessary first to determine the direction of the text before we will directly recognize it. The article suggests the development of a deep neural network for determination of the text position in the context of book covers recognizing. The results of training and testing of a convolutional neural network on synthetic data as well as the examples of the network functioning on the real data are presented.


Sign in / Sign up

Export Citation Format

Share Document