scholarly journals A Mobile Kalman-Filter Based Solution for the Real-Time Estimation of Spatio-Temporal_newline Gait Parameters

Author(s):  
Alberto Ferrari ◽  
Pieter Ginis ◽  
Michael Hardegger ◽  
Filippo Casamassima ◽  
Laura Rocchi ◽  
...  
2018 ◽  
Vol 51 (15) ◽  
pp. 1062-1067 ◽  
Author(s):  
Mojtaba Sharifzadeh ◽  
Mario Pisaturo ◽  
Arash Farnam ◽  
Adolfo Senatore

1984 ◽  
Vol 106 (1) ◽  
pp. 83-88 ◽  
Author(s):  
T. Kitamura ◽  
T. Kijima ◽  
H. Akashi

This paper demonstrates a modeling technique of prosthetic heart valves. In the modeling, a pumping cycle is divided into four phases, in which the state of the valve and flow is different. The pressure-flow relation across the valve is formulated separately in each phase. This technique is developed to build a mathematical model used in the real time estimation of the hemodynamic state under artificial heart pumping. The model built by this technique is simple enough for saving the computational time in the real time estimation. The model is described by the first-order ordinary differential equation with 12 parameters. These parameters can be uniquely determined beforehand from in-vitro experimental data. It is shown that the model can adapt, with sufficient accuracy, to a change in the practical pumping condition and the viscosity of the fluid in their practical range, and is also demonstrated that the estimated backflow volume by model agrees closely with the actual one.


2017 ◽  
Vol 17 (02) ◽  
pp. e20 ◽  
Author(s):  
Kevin E. Soulier ◽  
Matías Nicolás Selzer ◽  
Martín Leonardo Larrea

In recent years, Augmented Reality has become a very popular topic, both as a research and commercial field. This trend has originated with the use of mobile devices as computational core and display. The appearance of virtual objects and their interaction with the real world is a key element in the success of an Augmented Reality software. A common issue in this type of software is the visual inconsistency between the virtual and real objects due to wrong illumination. Although illumination is a common research topic in Computer Graphics, few studies have been made about real time estimation of illumination direction. In this work we present a low-cost approach to detect the direction of the environment illumination, allowing the illumination of virtual objects according to the real light of the ambient, improving the integration of the scene. Our solution is open-source, based on Arduino hardware and the presented system was developed on Android.


Sign in / Sign up

Export Citation Format

Share Document