Frequency Control Design for Offshore Wind Farm Grid With LCC-HVDC Link Connection

2008 ◽  
Vol 23 (3) ◽  
pp. 1085-1092 ◽  
Author(s):  
Risheng Li ◽  
S. Bozhko ◽  
G. Asher
Energies ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 2718 ◽  
Author(s):  
Ashkan Nami ◽  
José Amenedo ◽  
Santiago Gómez ◽  
Miguel Álvarez

This paper presents a novel active power filtering (APF) scheme embedded in a centralised frequency control of an offshore wind farm (OWF) connected to a high voltage direct current link through a diode rectifier station. The APF is carried out by a voltage source converter (VSC), which is connected to the rectifier station to provide frequency control for the offshore ac-grid. The proposed APF scheme eliminates harmonic currents at a capacitor bank placed at the rectifier station. This leads to a significant reduction in the total harmonic distortion of the offshore ac-grid voltage, and thus, to an improvement in the OWF power. Hence, the rectifier passive ac-filter bank is not needed anymore. A new selective harmonic compensation method based on the dynamic phasor (DP) theory is used in the proposed APF scheme which allows the extraction of the phasor form of harmonics in dc-signals. Therefore, the well-known proportional-integral regulators are used for the harmonic current compensation. Moreover, the offshore ac-grid is modelled for the system harmonic analysis using a grid solution based on the DP theory. Finally, a VSC power rating analysis is studied. The performance of the proposal is validated by simulations in both steady-state and transient conditions.


2014 ◽  
Vol 5 (1) ◽  
Author(s):  
M. Ajay Kumar ◽  
N.V. Srikanth

AbstractThe voltage source converter (VSC) based multiterminal high voltage direct current (MTDC) transmission system is an interesting technical option to integrate offshore wind farms with the onshore grid due to its unique performance characteristics and reduced power loss via extruded DC cables. In order to enhance the reliability and stability of the MTDC system, an adaptive neuro fuzzy inference system (ANFIS) based coordinated control design has been addressed in this paper. A four terminal VSC-MTDC system which consists of an offshore wind farm and oil platform is implemented in MATLAB/ SimPowerSystems software. The proposed model is tested under different fault scenarios along with the converter outage and simulation results show that the novel coordinated control design has great dynamic stabilities and also the VSC-MTDC system can supply AC voltage of good quality to offshore loads during the disturbances.


2020 ◽  
Vol 35 (1) ◽  
pp. 130-138
Author(s):  
Ashkan Nami ◽  
Jose Luis Rodriguez-Amenedo ◽  
Santiago Arnaltes ◽  
Miguel Angel Cardiel-Alvarez ◽  
Roberto Alves Baraciarte

2019 ◽  
Vol 139 (4) ◽  
pp. 259-268
Author(s):  
Effat Jahan ◽  
Md. Rifat Hazari ◽  
Mohammad Abdul Mannan ◽  
Atsushi Umemura ◽  
Rion Takahashi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document