scholarly journals The Space Weather Threat to Situational Awareness, Communications, and Positioning Systems

2015 ◽  
Vol 43 (9) ◽  
pp. 3086-3098 ◽  
Author(s):  
Dale C. Ferguson ◽  
Simon Peter Worden ◽  
Daniel E. Hastings
2009 ◽  
Vol 62 (3) ◽  
pp. 543-554 ◽  
Author(s):  
Renato Filjar ◽  
Tomislav Kos ◽  
Serdjo Kos

Ionospheric delay is the major source of satellite positioning system performance degradation. Designers of satellite positioning systems attempt to mitigate the impact of the ionospheric delay by deployment of correction models. For instance, the American GPS utilises a global standard (Klobuchar) model, based on the assumption that the daily distribution of GPS ionospheric delay values follows a biased cosine curve during day-time, while during the night-time the GPS ionospheric delay remains constant. Providing a compromise between computational complexity and accuracy, the Klobuchar model is capable of correcting up to 70% of actual ionospheric delay, mainly during quiet space weather conditions. Unfortunately, it provides a very poor performance during severe space weather, geomagnetic and ionospheric disturbances. In addition, a global approach in Klobuchar model development did not take into account particularities of the local ionospheric conditions that can significantly contribute to the general GPS ionospheric delay. Current research activities worldwide are concentrating on a better understanding of the observed GPS ionospheric delay dynamics and the relation to local ionosphere conditions.Here we present the results of a study addressing daily GPS ionospheric delay dynamics observed at a Croatian coastal area of the northern Adriatic (position ϕ=45°N, λ=15°E) in the periods of quiet space weather in 2007. Daily sets of actual GPS ionospheric delay values were assumed to be the time series of composite signals, consisting of DC, cosine and residual components, respectively. Separate models have been developed that describe components of actual GPS ionospheric delay in the northern Adriatic for summer and winter, respectively. A special emphasis was given to the statistical description of the residual component of the daily distribution of GPS ionospheric delay, obtained by removing DC (bias) and cosine components from the composite GPS ionospheric delay.Future work will be focused on further evaluation and validation of a quiet space weather GPS ionospheric delay model for the northern Adriatic, transition to a non-Klobuchar model, and on research in local GPS ionospheric delay dynamics during disturbed and severe space weather conditions.


2020 ◽  
Vol 10 ◽  
pp. 24
Author(s):  
Osku Raukunen ◽  
Miikka Paassilta ◽  
Rami Vainio ◽  
Juan V. Rodriguez ◽  
Timo Eronen ◽  
...  

Solar energetic particles (SEPs) pose a serious radiation hazard to spacecraft and astronauts. The highest energy SEPs are a significant threat even in heavily shielded applications. We present a new probabilistic model of very high energy differential peak proton fluxes. The model is based on GOES/HEPAD observations between 1986 and 2018, i.e., covering very nearly three complete solar cycles. The SEP event list for the model was defined using a statistical criterion derived by setting the possibility of false detection of an event to 1%. The peak flux distributions were calculated for the interpolated energies 405 MeV, 500 MeV and 620 MeV, and modelled with exponentially cut off power law functions. The HEPAD data were cleaned and corrected using a “bow-tie” method which is based on the response functions of the HEPAD channels P8–P10 found in the instrument calibration reports. The results of the model are available to the Space Weather community as a web-based tool at the ESA’s Space Situational Awareness Programme Space Weather Service Network.


2019 ◽  
Author(s):  
Ana Reinbold ◽  
Olli Seppänen ◽  
Antti Peltokorpi ◽  
Vishal Singh ◽  
Erez Dror

2021 ◽  
Author(s):  
Jasa Calogovic ◽  
Mateja Dumbović ◽  
Davor Sudar ◽  
Bojan Vršnak ◽  
Karmen Martinić ◽  
...  

<p><span>The Drag-based Model (DBM) is an analytical model for heliospheric propagation of Coronal Mass Ejections (CMEs) that predicts the CME arrival time and speed at Earth or any other given target in the solar system. It is based on the equation of motion and depends on initial CME parameters, background solar wind speed, w and the drag parameter γ. A very short computational time of DBM (< 0.01s) allowed us to develop the Drag-Based Ensemble Model (DBEM) that considers the variability of model input parameters by making an ensemble of n different input parameters to calculate the distribution and significance of the DBM results. Using such an approach, we apply DBEM to determine the most likely CME arrival times and speeds, quantify the prediction uncertainties and calculate the confidence intervals. Recently, a new DBEMv3 version was developed including the various improvements and Graduated Cylindrical Shell (GCS) option for the CME geometry input as well as the CME propagation visualizations. Thus, we compare the DBEMv3 with previous DBEM versions (e.g. DBEMv2), evaluate it and determine the DBEMv3 performance and errors by using various CME-ICME lists. Compared to the previous versions, the DBEMv3 provides very similar results for all calculated output parameters with slight improvement in the performance. Based on the evaluation performed for 146 CME-ICME pairs, the DBEMv3 performance with mean error (ME) of -11.3 h, mean absolute error (MAE) of 17.3 h was obtained, similar to previous DBM and DBEM evaluations. Fully operational DBEMv3 web application was integrated as one of the ESA Space Situational Awareness portal services (https://swe.ssa.esa.int/current-space-weather) providing an important tool for space weather forecasters.</span></p>


2001 ◽  
Vol 54 (2) ◽  
pp. 293-296 ◽  
Author(s):  
Renato Filjar

Although GPS positioning errors are now well described, there are still some uncertainties regarding the impact of some rare space weather phenomena on GPS positioning accuracy. Solar eclipses have been considered as one source of such rare events, so the 1999 solar eclipse gave the opportunity to collect horizontal GPS positioning data for further analysis. The results of statistical analysis show no deterioration of horizontal GPS positioning accuracy. Space weather, ionospheric and geomagnetic conditions were also carefully analysed and showed no significant activity. In conclusion, the experiment confirmed negligible impact of the 1999 solar eclipse on horizontal GPS positioning accuracy, and opens discussion concerning application of satellite positioning systems in space and ionospheric weather monitoring.


Author(s):  
Michael Bergmann

The development of ship navigation classically is based on paper charts, positioning systems like sextants, or nowadays GNSS. Lead by IMO and with support by organizations like IHO and IALA, the shipping industry moves towards the future of enhanced and electronic navigation to improve safety and efficiency of ship movement around the world. The basic data layers for this development are electronic vector charts. This data layer needs to be enhanced by a growing number of other data streams to create situational awareness during any voyage, but also allow for improved planning and efficient ship movement to increase safety and reduce pollution by reducing carbon footprint and reduce risk of environmental issues due to accidents. Given that, the aim of e-Navigation is to integrate data streams, leading to information for situational awareness, which enables wise decisions for mariners on ships and support teams on shore.


2021 ◽  
Vol 217 (5) ◽  
Author(s):  
Daniel N. Baker ◽  
Shrikanth G. Kanekal ◽  
Vaughn Hoxie ◽  
Xinlin Li ◽  
Allison N. Jaynes ◽  
...  

AbstractThe Relativistic Electron-Proton Telescope (REPT) instruments were designed to measure ∼2 to >18 MeV electrons and ∼18 to > 115 MeV protons as part of the science payloads onboard the dual Radiation Belt Storm Probes (RBSP) spacecraft. The REPT instruments were turned on and configured in their science acquisition modes about 2 days after the RBSP launch on 30 August 2012. The REPT-A and REPT-B instruments both operated flawlessly until mission cessation in 2019. This paper reviews briefly the REPT instrument designs, their operational performance, relevant mode changes and trending over the course of the mission, as well as pertinent background effects (and recommended corrections). A substantial part of this paper highlights discoveries and significant advancement of our understanding of physical-processes obtained using REPT data. We do this for energetic electrons primarily in the outer Van Allen belt and for energetic protons in the inner Van Allen zone. The review also describes several ways in which REPT data were employed for important space weather applications. The paper concludes with assessments of ways that REPT data might further be exploited to continue to advance radiation belt studies. The paper also discusses the pressing and critical need for the operational continuation of REPT-like measurements both for science and for space situational awareness.


Sign in / Sign up

Export Citation Format

Share Document