Fault Classification and Section Identification of an Advanced Series-Compensated Transmission Line Using Support Vector Machine

2007 ◽  
Vol 22 (1) ◽  
pp. 67-73 ◽  
Author(s):  
P. K. Dash ◽  
S. R. Samantaray ◽  
Ganapati Panda
Electronics ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1496
Author(s):  
Hao Liang ◽  
Yiman Zhu ◽  
Dongyang Zhang ◽  
Le Chang ◽  
Yuming Lu ◽  
...  

In analog circuit, the component parameters have tolerances and the fault component parameters present a wide distribution, which brings obstacle to classification diagnosis. To tackle this problem, this article proposes a soft fault diagnosis method combining the improved barnacles mating optimizer(BMO) algorithm with the support vector machine (SVM) classifier, which can achieve the minimum redundancy and maximum relevance for feature dimension reduction with fuzzy mutual information. To be concrete, first, the improved barnacles mating optimizer algorithm is used to optimize the parameters for learning and classification. We adopt six test functions that are on three data sets from the University of California, Irvine (UCI) machine learning repository to test the performance of SVM classifier with five different optimization algorithms. The results show that the SVM classifier combined with the improved barnacles mating optimizer algorithm is characterized with high accuracy in classification. Second, fuzzy mutual information, enhanced minimum redundancy, and maximum relevance principle are applied to reduce the dimension of the feature vector. Finally, a circuit experiment is carried out to verify that the proposed method can achieve fault classification effectively when the fault parameters are both fixed and distributed. The accuracy of the proposed fault diagnosis method is 92.9% when the fault parameters are distributed, which is 1.8% higher than other classifiers on average. When the fault parameters are fixed, the accuracy rate is 99.07%, which is 0.7% higher than other classifiers on average.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Tao Yi ◽  
Hao Zheng ◽  
Yu Tian ◽  
Jin-peng Liu

In order to meet the demand of power supply, the construction of transmission line projects is constantly advancing, and the level of cost control is constantly improving, which puts forward higher requirements for the accuracy of cost prediction. This paper proposes an intelligent cost prediction model based on least squares support vector machine (LSSVM) optimized by particle swarm optimization (PSO). Originally extracting natural, technological, and economic indexes from the perspective of cost composition, principal component analysis (PCA) is used to reduce the dimension of indexes. And PSO is innovatively introduced to optimize the parameters of LSSVM model to obtain the optimal parameters. The obtained principal component data are imported into empirical parameter LSSVM prediction model and the optimized parameter PSO-LSSVM prediction model, respectively, for modeling and prediction, and then comparing the prediction results to analyze the effect of model optimization. The results show that the absolute deviation of the optimized parameter prediction model is less than 9%. And the prediction accuracy of the optimized parameter prediction model is better than that of the empirical parameter model, which can provide a reliable basis for investment decision-making of transmission line projects.


Sign in / Sign up

Export Citation Format

Share Document