A self-powered wireless sensing node for ambient vibration pattern identification by using a hybrid energy-harvesting mode

Author(s):  
Q. S. He ◽  
C. Dong ◽  
K. L. Li ◽  
J. C. Wang ◽  
D. C. Xu ◽  
...  
Sensors ◽  
2021 ◽  
Vol 21 (8) ◽  
pp. 2604
Author(s):  
Mahmuda Khatun Mishu ◽  
Md. Rokonuzzaman ◽  
Jagadeesh Pasupuleti ◽  
Mohammad Shakeri ◽  
Kazi Sajedur Rahman ◽  
...  

In this paper, an integrated thermoelectric (TE) and photovoltaic (PV) hybrid energy harvesting system (HEHS) is proposed for self-powered internet of thing (IoT)-enabled wireless sensor networks (WSNs). The proposed system can run at a minimum of 0.8 V input voltage under indoor light illumination of at least 50 lux and a minimum temperature difference, ∆T = 5 °C. At the lowest illumination and temperature difference, the device can deliver 0.14 W of power. At the highest illumination of 200 lux and ∆T = 13 °C, the device can deliver 2.13 W. The developed HEHS can charge a 0.47 F, 5.5 V supercapacitor (SC) up to 4.12 V at the combined input voltage of 3.2 V within 17 s. In the absence of any energy sources, the designed device can back up the complete system for 92 s. The sensors can successfully send 39 data string to the webserver within this time at a two-second data transmission interval. A message queuing telemetry transport (MQTT) based IoT framework with a customised smartphone application ‘MQTT dashboard’ is developed and integrated with an ESP32 Wi-Fi module to transmit, store, and monitor the sensors data over time. This research, therefore, opens up new prospects for self-powered autonomous IoT sensor systems under fluctuating environments and energy harvesting regimes, however, utilising available atmospheric light and thermal energy.


2022 ◽  
Vol 51 ◽  
pp. 101891
Author(s):  
Xiaoyi Dai ◽  
Hao Wang ◽  
Hao Wu ◽  
YaJia Pan ◽  
Dabing Luo ◽  
...  

2018 ◽  
Vol 5 (2) ◽  
pp. 736-746 ◽  
Author(s):  
Ozgur B. Akan ◽  
Oktay Cetinkaya ◽  
Caglar Koca ◽  
Mustafa Ozger

Micromachines ◽  
2018 ◽  
Vol 9 (11) ◽  
pp. 598 ◽  
Author(s):  
Kwangseok Lee ◽  
Jeong-won Lee ◽  
Kihwan Kim ◽  
Donghyeon Yoo ◽  
Dong Kim ◽  
...  

Water waves are a continuously generated renewable source of energy. However, their random motion and low frequency pose significant challenges for harvesting their energy. Herein, we propose a spherical hybrid triboelectric nanogenerator (SH-TENG) that efficiently harvests the energy of low frequency, random water waves. The SH-TENG converts the kinetic energy of the water wave into solid–solid and solid–liquid triboelectric energy simultaneously using a single electrode. The electrical output of the SH-TENG for six degrees of freedom of motion in water was investigated. Further, in order to demonstrate hybrid energy harvesting from multiple energy sources using a single electrode on the SH-TENG, the charging performance of a capacitor was evaluated. The experimental results indicate that SH-TENGs have great potential for use in self-powered environmental monitoring systems that monitor factors such as water temperature, water wave height, and pollution levels in oceans.


Sign in / Sign up

Export Citation Format

Share Document