A hybrid energy harvesting system for self-powered applications in shared bicycles

2022 ◽  
Vol 51 ◽  
pp. 101891
Author(s):  
Xiaoyi Dai ◽  
Hao Wang ◽  
Hao Wu ◽  
YaJia Pan ◽  
Dabing Luo ◽  
...  
Sensors ◽  
2021 ◽  
Vol 21 (8) ◽  
pp. 2604
Author(s):  
Mahmuda Khatun Mishu ◽  
Md. Rokonuzzaman ◽  
Jagadeesh Pasupuleti ◽  
Mohammad Shakeri ◽  
Kazi Sajedur Rahman ◽  
...  

In this paper, an integrated thermoelectric (TE) and photovoltaic (PV) hybrid energy harvesting system (HEHS) is proposed for self-powered internet of thing (IoT)-enabled wireless sensor networks (WSNs). The proposed system can run at a minimum of 0.8 V input voltage under indoor light illumination of at least 50 lux and a minimum temperature difference, ∆T = 5 °C. At the lowest illumination and temperature difference, the device can deliver 0.14 W of power. At the highest illumination of 200 lux and ∆T = 13 °C, the device can deliver 2.13 W. The developed HEHS can charge a 0.47 F, 5.5 V supercapacitor (SC) up to 4.12 V at the combined input voltage of 3.2 V within 17 s. In the absence of any energy sources, the designed device can back up the complete system for 92 s. The sensors can successfully send 39 data string to the webserver within this time at a two-second data transmission interval. A message queuing telemetry transport (MQTT) based IoT framework with a customised smartphone application ‘MQTT dashboard’ is developed and integrated with an ESP32 Wi-Fi module to transmit, store, and monitor the sensors data over time. This research, therefore, opens up new prospects for self-powered autonomous IoT sensor systems under fluctuating environments and energy harvesting regimes, however, utilising available atmospheric light and thermal energy.


2019 ◽  
Vol 66 (7) ◽  
pp. 2784-2793 ◽  
Author(s):  
Salar Chamanian ◽  
Berkay Ciftci ◽  
Hasan Ulusan ◽  
Ali Muhtaroglu ◽  
Haluk Kulah

2015 ◽  
Vol 0 (0) ◽  
Author(s):  
Viktor Hofmann ◽  
Gleb Kleyman ◽  
Jens Twiefel

AbstractIn this article the modeling of a broadband energy harvester utilizing piezoelectric and electromagnetic effects for rotational applications is presented. The hybrid energy harvester consists of a one-side-clamped piezoelectric bimorph with a solenoid on the free end and is excited periodically but non-harmonically by magnets that are fixed on a rotating object. To estimate and describe the performance of the energy harvester concept a linear semi-analytical model for the bimorph and the solenoid is developed and then enhanced for non-harmonic system oscillations by decomposing them into their harmonic components. A comparison between the calculated and measurement signals of a prototype device shows great conformity. According to model-based and experimental analysis, the hybrid system has good broadband behavior regarding electric power output. That aspect makes the device a perfect energy-harvesting system for application with highly fluctuating revolution speeds like miniature wind turbines.


Sign in / Sign up

Export Citation Format

Share Document